Skip to main content
Log in

Vanadium(V) catalysis of perborate oxidation of substituted 5-oxo acids: a kinetic and mechanistic study

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Vanadium (V) catalyzes perborate oxidation of substituted 5-oxo acid in acidic solution, being 1.6 order with respect to the oxidant, first order in the catalyst, inhibited by H+ and displays Michaelis–Menten kinetics on the reductant. In aqueous acetic acid solution, perborate generates hydrogen peroxide and the kinetic results reveal formation of oxodiperoxovanadium(V)-oxo acid complex. At high acidity, the ionic strength of the medium has little influence on the oxidation rates. But at low acidity, the rate increases with increasing ionic strength. The rate of oxidation increases with decreasing dielectric constant of the medium. Electron-releasing substituents in the aromatic ring accelerate the reaction rate and electron-withdrawing substituents retard the reaction. The order of reactivity among the studied 5-oxo acid is p-methoxy >> p-methyl > p-phenyl > -H > p-chloro > p-bromo > m-nitro. Activation parameters have been evaluated using Arrhenius and Eyring’s plots. A mechanism consistent with the observed kinetic data has been proposed and discussed. A suitable rate law has been derived based on the mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Similar content being viewed by others

References

  1. Karunakaran C, Muthukumaran B (1999) Vanadium(V) catalysis of perborate oxidation of iodide ion. Pol J Chem 73:1827–1836

    CAS  Google Scholar 

  2. Connor TM, Richards RE (1958) J. Chem. Soc. 289–293.

  3. Edwards JO, Ross VF (1967) The structural chemistry of the borates. In: Muetterties EL (ed) The chemistry of boron and its compounds. Wiley, New York, p 192

    Google Scholar 

  4. Cotton FA, Wilkinson G (1988) Advanced inorganic chemistry, 5th edn. Wiley Interscience, NY, p 172

    Google Scholar 

  5. McKillop A, Sanderson WR (1995) Organic chemistry portal. Tetrahedron 51:6145–6166

    Article  CAS  Google Scholar 

  6. McKillop A, Sanderson WR (2000) Sodium perborate and sodium percarbonate: further applications in organic synthesis. J Chem Soc Perkin Trans 1:471–479

    Article  Google Scholar 

  7. Muzart J (1995) Organic chemistry portal. Synthesis 1325–1347

  8. Karunakaran C, Palanisamy PN (1998) Kinetic evidence for (N,N-dimethylaniline)-oxodiperoxomolybdenum(VI) or tungsten(VI) as oxidizing species in molybdenum(VI) or tungsten(VI) catalyzed hydrogen peroxide (perborate) oxidation of N,N-dimethylaniline. Synth React Inorg Met-Org Chem 28:1115–1125

    Article  CAS  Google Scholar 

  9. Karunakaran C, Muthukumaran B (1997) Zirconium (IV) catalysis in perborate oxidation of iodide. React Kinet Catal Lett 60:387–394

    Article  CAS  Google Scholar 

  10. Karunakaran C, Muthukumaran B (1995) Molybdenum(VI) catalysis of perborate or hydrogen peroxide oxidation of iodide ion. Transition Met Chem 20:460–462

    Article  CAS  Google Scholar 

  11. Karunakaran C, Manimekalai P (1991) Kinetics and mechanism of perborate oxidation of organic sulphides. Tetrahedron 47:8733–8738

    Article  CAS  Google Scholar 

  12. Karunakaran C, Kamalam R (2000) On the mechanism of the perborate oxidation of organic sulfides in glacial acetic acid. Eur J Org Chem 3261. doi:10.1002/1099-0690(200010)

  13. Karunakaran C, Ramachandran V, Palanisamy PN (1999) Linear free energy relationship in complex reaction: tungsten(VI) catalyzed perborate oxidation of S-phenylmercaptoacetic acids. Int J Chem Kinet 31:675–681

    Article  CAS  Google Scholar 

  14. Karunakaran C, Kamalam R (2002) Mechanism and reactivity in perborate oxidation of anilines in acetic acid. J Chem Soc Perkin Trans 2:2011–2018

    Article  Google Scholar 

  15. Kungumathilagam D, Karunakaran K (2013) Kinetics and mechanism of meso-tetraphenylporphyriniron(III) chloride (TPP) catalyzed oxidation of indole by sodium perborate. Pol J Chem Tech 15(2):107–111

    Article  CAS  Google Scholar 

  16. Marigangaiah NP, Banerji KK (1976) Indian J Chem 14A:660

    Google Scholar 

  17. Meenakshi A, Santhappa M (1973) Indian J Chem 11:393

    CAS  Google Scholar 

  18. Mohamed Farook NA (2007) Kinetics of oxidation of 4-oxoacids by N-chlorosaccharin in aqueous acetic acid medium. J Solut Chem 36:345–356

    Article  Google Scholar 

  19. Mohamed Farook NA, Seyed Dameem GA (2011) Kinetics of oxidation of 3-benzoylpropionic acid by N-chlorobenzamide in aqueous acetic acid medium. J Chem 8:561–564. doi:10.1155/2011/697973

    CAS  Google Scholar 

  20. Freeda Gnana Rani D, Maria Pushparaj FJ, Alphonse I, Rangappa KS (2002) Kinetics and mechanism of oxidation of 4-oxoacids by hexacyanoferrate(III) catalysed by Os(VIII). Indian J Chem 41B:2153–2159

    Google Scholar 

  21. Sikkandar G (2000) Asian J Chem 12:1037–1040

    CAS  Google Scholar 

  22. Kenneth B, Wiberg K, Stewart R (1955) J Am Chem Soc 77:1983–1986

    Article  Google Scholar 

  23. Vogel AI (1958) Text book of quantitative chemical analysis, 5th edn. Longman, New York, pp 708–720

    Google Scholar 

  24. Tompkins FC (1943) Trans Faraday Soc 39:267–280

    Article  Google Scholar 

  25. Duke FR (1952) J Phys Chem 56:882

    Article  CAS  Google Scholar 

  26. Alder MG, Leffler JE (1954) J Am Chem Soc 76:1425–1427

    Article  CAS  Google Scholar 

  27. Feigl F, Anger V (1975) Spot tests in organic analysis. Elsevier, Amsterdam, p 459

    Google Scholar 

  28. Linert W (1994) Chem Soc Rev 23:429

    Article  CAS  Google Scholar 

  29. Linert W, Jameson RF (1989) The isokinetic relationship. Chem Soc Rev 18:477–505

    Article  CAS  Google Scholar 

  30. Shorter J, Zalewski RI, Krygowski TM (1991) Similarity models in organic chemistry. In: Shorter J (ed) Biochemistry and related fields. Elsevier, Amsterdam, p 80

    Google Scholar 

  31. Dayal SK, Ehrenson S, Taft RW (1972) Substituent effects, electronic transmission, and structural dependence of .pi. Delocalization as studied with the p-fluorophenyl tag. J Am Chem Soc 94:9113–9122

    Article  CAS  Google Scholar 

  32. Pizer R, Tihal C (1987) Inorg Chem 26:3639–3642

    Article  CAS  Google Scholar 

  33. Folder entitled “The chemistry of vanadium” on your bench

  34. Cotton FA, Wilkinson G Basic inorganic chemistry, Sections 24.9–24.12

  35. Huheey JE Inorganic chemistry, 3rd edn. Appendix F

  36. Shriver DF, Atkins PW, Langford CH (1990) Inorganic chemistry, chapter 8

  37. Bradley DC, Thornton P (1973) In: Bailar JC et al (eds) Comprehensive inorganic chemistry, vol 3. Oxford, Pergamon

    Google Scholar 

  38. Connor JA, Ebsworth EAV (1964) In: Emeleus HJ, Sharpe AG (eds) Advances in inorganic chemistry and radiochemistry, vol 6. Academic, NY, p 279

    Google Scholar 

  39. Orhanovic M, Wilkins RG (1967) J Am Chem Soc 89:278

    Article  CAS  Google Scholar 

  40. Ogata Y, Tanaka K (1982) Kinetics of the oxidation of diphenyl sulfide with hydrogen peroxide catalyzed by sodium metavanadate. Can J Chem 60:848–852. doi:10.1139/v82-128

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Muthukumaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shree Devi, S., Muthukumaran, B. & Krishnamoorthy, P. Vanadium(V) catalysis of perborate oxidation of substituted 5-oxo acids: a kinetic and mechanistic study. Ionics 20, 1783–1794 (2014). https://doi.org/10.1007/s11581-014-1135-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1135-y

Keywords

Navigation