Skip to main content
Log in

Electrochemical performance of surfactant-processed LiFePO4 as a cathode material for lithium-ion rechargeable batteries

  • Short Communication
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

This study focuses on the effect of addition of surfactant as a dispersing agent during vibratory ball milling of LiFePO4 (LFP) precursor materials on the electrochemical performance of solid-state reaction synthesized LFP for lithium-ion battery cathode material. LFP particles formed after calcinations of ball milled LFP precursors (Li2CO3, FeC2O4, and NH4H2PO4) showed better size uniformity, morphology control, and reduced particle size when anionic surfactant (Avanel S-150) was used. The specific surface area of LFP particles increased by approximately twofold on addition of surfactant during milling. These particles showed significantly enhanced cyclic performance during charge/discharge due to a reduced polarization of electrode material. Electrodes fabricated from LFP particles by conventional milling process showed a 22 % decrease in capacity after 50 cycles, whereas the performance of electrode prepared by surfactant processed LFP showed only 3 % loss in capacity. The LFP particles were characterized using XRD, FE-SEM, particle size distribution, density measurement, and BET-specific surface area measurement. Electrochemical impedance spectra and galvanostatic charge/discharge test were performed for the electrochemical performance using coin-type cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  2. Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M (2001) J Power Sources 97–98:503–507

    Article  Google Scholar 

  3. Murugan AV, Muraliganth T, Manthiram A (2008) Electrochem Commun 10:903–906

    Article  Google Scholar 

  4. Wu X-L, Jiang L-Y, Cao F-F, Guo Y-G, Wan L-J (2009) Advanced Materiasls 21:2710–2714

    Article  CAS  Google Scholar 

  5. Liu H, Wang GX, Wexler D, Wang JZ, Liu HK (2008) Electrochem Commun 10:165–169

    Article  Google Scholar 

  6. Cui Y, Zhao X, Guo R (2010) Mater Res Bull 45:844–849

    Article  CAS  Google Scholar 

  7. Liu Z, Tay S, Hong L, Lee J (2010) J Solid State Electrochem 15(1):205–209

    Article  Google Scholar 

  8. Hu C, Yi H, Fang H, Yang B, Yao Y, Ma W, Dai Y (2010) Int J Electrochem Sci 5:1457–1463

    CAS  Google Scholar 

  9. Roberts MR, Vitins G, Owen JR (2008) J Power Sources 179:754–762

    Article  CAS  Google Scholar 

  10. Amin R, Lin C, Maier J (2008) Phys Chem Chem Phys 10:3519–3523

    Article  CAS  Google Scholar 

  11. Yan X, Yang G, Liu J, Ge Y, Xie H, Pan X, Wang R (2009) Electrochim Acta 54:5770–5774

    Article  CAS  Google Scholar 

  12. Kim J-K, Choi J-W, Chauhan GS, Ahn J-H, Hwang G-C, Choi J-B, Ahn H-J (2008) Electrochim Acta 53:8258–8264

    Article  CAS  Google Scholar 

  13. Wang Y, Sun B, Park J, Kim W-S, Kim H-S, Wang G (2011) J Alloys Compd 509:1040–1044

    Article  CAS  Google Scholar 

  14. Nien Y-H, Carey JR, Chen J-S (2009) J Power Sources 193:822–827

    Article  CAS  Google Scholar 

  15. Jin EM, Jin B, Jun D-K, Park K-H, Gu H-B, Kim K-W (2008) J Power Sources 178:801–806

    Article  CAS  Google Scholar 

  16. Muraliganth T, Murugan AV, Manthiram A (2008) J Mat Chem 18:5661–5668

    Article  CAS  Google Scholar 

  17. Feya GT-K, Chena YG, Kaob H-M (2009) J Power Sources 189:169–178

    Article  Google Scholar 

  18. Malik R, Burch D, Bazant M, Ceder G (2010) Nano Lett 10:4123–4127

    Article  CAS  Google Scholar 

  19. Li C, Hua N, Wang C, Kang X, Wumair T, Han Y (2011) J Solid State Electrochem 15:1971–1976

    Article  CAS  Google Scholar 

  20. Porcher W, Lestriez B, Jouanneau S, Guyomard D (2010) J Power Sources 195:2835–2843

    Article  CAS  Google Scholar 

  21. Li C-C, Peng X-W, Lee J-T, Wang F-M (2010) J Electrochem Soc 157:A517–A520

    Article  CAS  Google Scholar 

  22. Li J, Armstrong BL, Kiggans J, Daniel C, Wood DL (2012) Langmuir 28:3783–3790

    Article  CAS  Google Scholar 

  23. Choi D, Wang D, Bae IT, Xiao J, Nie Z, Wang W, Viswanathan VV, Lee YJ, Zhang JG, Graff GL, Yang Z, Liu J (2010) Nano Lett 10:2799–2805

    Article  CAS  Google Scholar 

  24. Choi D, Wang D, Viswanathan VV, Bae I-T, Wang W, Nie Z, Zhang J-G, Graff GL, Liu J, Yang Z, Duong T (2010) Electrochem Comm 12:378–381

    Article  CAS  Google Scholar 

  25. Ferrari S, Lavall RL, Capsoni D, Quartarone E, Magistris A, Mustarelli P, Canton P (2010) J Phys Chem C 114:12598–12603

    Article  CAS  Google Scholar 

  26. Yang H, Wu X-L, Cao M-H, Guo Y-G (2009) J Phys Chem C 113:3345–3351

    Article  CAS  Google Scholar 

  27. Rane KS, Nikumbh AK, Mukhedkar AJ (1981) J Mat Sci 16:2387–2397

    Article  CAS  Google Scholar 

  28. Pereira N, Matthias C, Bell K, Badway F, Plitz I, Al-Sharab J, Cosandey F, Shah P, Isaacs N, Amatucci GG (2005) J Electrochem Soc 152:A114–A125

    Article  CAS  Google Scholar 

  29. Xu Y, Lu Y, Yan L, Yang Z, Yang R (2006) J Power Sources 160:570–576

    Article  CAS  Google Scholar 

  30. Kang H-C, Jun D-K, Jin B, Jin EM, Park K-H, Gu H-B, Kim K-W (2008) J Power Sources 179:340–346

    Article  CAS  Google Scholar 

  31. Rehbinder PA, Shchukin ED (1972) Prog Surf Sci 3:97–188

    Article  Google Scholar 

  32. Kaczmarek WA, Ninham BW (1995) Mat Chem Phys 40:21–29

    Article  CAS  Google Scholar 

  33. Kunduraci M, Amatucci GG (2008) Electrochim Acta 53:4193–4199

    Article  CAS  Google Scholar 

  34. Li J, Daniel C, Wood D (2011) J Power Sources 196:2452–2460

    Article  CAS  Google Scholar 

  35. Liu Y, Cao C, Li J (2010) Electrochim Acta 55:3921–3926

    Article  CAS  Google Scholar 

  36. Fedorková A, Nacher-Alejos A, Gómez-Romero P, Orináková R, Kaniansky D (2010) Electrochim Acta 55:943–947

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Meng’s group for providing electrochemical test instrument used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungbae Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Kumar, P., Lee, G. et al. Electrochemical performance of surfactant-processed LiFePO4 as a cathode material for lithium-ion rechargeable batteries. Ionics 19, 371–378 (2013). https://doi.org/10.1007/s11581-012-0830-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-012-0830-9

Keywords

Navigation