Skip to main content
Log in

Electrical behavior of an octahedral layered OL-1-type manganese oxide material

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

OL-1-type material (birnessite) is synthesized by an oxidoreduction process. Different physicochemical techniques were used to characterize the obtained material. AC impedance spectroscopy results show processes associated to the electrical conduction in bulk and grain boundary at high frequency, and an ionic conduction at low frequency. Here σ′(ω) shows a universal Jonscher’s law behavior associated to the electron hopping and charge polarization, and the value of 8.39 × 10−6 Ω−1 cm−1 found in the high frequency region at room temperature suggests its semiconductor nature. The combined results of AOS, TGA, and AA suggest the following chemical formula \( {\text{N}}{{\text{a}}^{ + }}_{{0.28}}\left( {{\text{M}}{{\text{g}}^{{2 + }}}_{{0.16}}{\text{M}}{{\text{n}}^{{4 + }}}_{{0.46}}{\text{M}}{{\text{n}}^{{3 + }}}_{{0.54}}} \right){{\text{O}}_{{2.03}}} \cdot 0.6{{\text{H}}_2}{\text{O}} \). Finally, the XRD pattern is characteristic of OL-1-type materials, the BET area was 56,25 m2 g−1, and the behavior of N2 isotherms suggests the presence of microporous and mesoporous structures. With the purpose of obtaining a better understanding of the ionic conductivity in these types of materials, magnesium exchange material was prepared and electrical properties at room temperature were analyzed. These results indicate that there is interplay among the structural, morphological, and textural properties with the electrical performance of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Suib SL (2008) Structure, porosity, and redox in porous manganese oxide octahedral layer and molecular sieve materials. J Mater Chem 18:1623–1631

    Article  CAS  Google Scholar 

  2. Brock SL, Duan N, Tian ZR, Giraldo O, Zhou H, Suib SL (1998) A review of porous manganese oxide materials. Chem Mater 10(10):2619–2628

    Article  CAS  Google Scholar 

  3. Feng Q, Kanoh H, Ooi K (1999) Manganese oxide porous crystals. J Mater Chem 9:319–333

    Article  CAS  Google Scholar 

  4. Luo J, Zhang Q, Huang A, Giraldo O, Suib SL (1999) Double-aging method for preparation of stabilized Na–buserite and transformations to todorokites incorporated with various metals. Inorg Chem 38(26):6106–6113

    Article  CAS  Google Scholar 

  5. Ching S, Krukowska KS, Suib SL (1999) A new synthetic route to todorokite-type manganese oxides. Inorg Chim Acta 294:123–132

    Article  CAS  Google Scholar 

  6. Cai J, Liu J, Suib SL (2002) Preparative parameters and framework dopant effects in the synthesis of layer-structure birnessite by air oxidation. Chem Mater 14(5):2071–2077

    Article  CAS  Google Scholar 

  7. Xionghan F, Wenfeng T, Fan L, Qiaoyun H, Xiangwen L (2005) Pathways of birnessite formation in alkali medium. Sci China Ser D Earth Sci 48(9):1438–1451

    Article  Google Scholar 

  8. Liu L, Feng Q, Yanagisawa K, Wang Y (2000) Characterization of birnessite-type sodium manganese oxides prepared by hydrothermal reaction process. J Mater Sci Lett 19:2047–2050

    Article  CAS  Google Scholar 

  9. Zhang L-C, Liu Z-H, Lv H, Tang X, Ooi K (2007) Shape-controllable synthesis and electrochemical properties of nanostructured manganese oxides. J Phys Chem C 111(24):8418–8423

    Article  CAS  Google Scholar 

  10. Suib SL (2008) Porous manganese oxide octahedral molecular sieves and octahedral layered materials. Acc Chem Res 41(4):479–487

    Article  CAS  Google Scholar 

  11. Tian ZR, Tong W, Wang JY, Duan NG, Krishnan VV, Suib SL (1997) Manganese oxide mesoporous structures: mixed-valent semiconducting catalysts. Science 276:926–930

    Article  CAS  Google Scholar 

  12. DeGuzman RN, Awaluddin A, Shen YF, Tian ZR, Suib SL, Ching S, O’Young CL (1995) Electrical resistivity measurements on manganese oxides with layer and tunnel structures: birnessites, todorokites, and cryptomelanes. Chem Mater 7(7):1286–1292

    Article  CAS  Google Scholar 

  13. Shen YF, Zerger RP, DeGuzman RN, Suib SL, McCurdy L et al (1993) Manganese oxide octahedral molecular sieves: preparation, characterization, and applications. Science 260:511–515

    Article  CAS  Google Scholar 

  14. Korotcenkov G (2008) The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater Sci Eng R 61:1–39

    Article  Google Scholar 

  15. Lai W, Haile SM (2005) Impedance spectroscopy as a tool for chemical and electrochemical analysis of mixed conductors: a case study of ceria. J Am Ceram Soc 88(11):2979–2997

    Article  CAS  Google Scholar 

  16. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy. Theory, experiments and applications. Wiley, New Jersey

    Book  Google Scholar 

  17. Frunza L, Schonhals A, Frunza S, Parvulescu VI, Cojocaru B, Carriazo D, Martin C, Rives V (2007) Rotational fluctuations of water confined to layered oxide materials: nonmonotonous temperature dependence of relaxation times. J Phys Chem A 111(24):5166–5175

    Article  CAS  Google Scholar 

  18. Doescher MS, Pietron JJ, Dening BM, Long JW, Rhodes CP, Edmondson CA, Rolison DB (2005) Using an oxide nanoarchitecture to make or break a proton wire. Anal Chem 77(24):7924–7932

    Article  CAS  Google Scholar 

  19. Xia GG, Tong W, Tolentino EN, Duan NG, Brock SL, Wang JY, Suib SL (2001) Synthesis and characterization of nanofibrous sodium manganese oxide with a 2 × 4 tunnel structure. Chem Mater 13(5):1585–1592

    Article  CAS  Google Scholar 

  20. Burton AW, Ong K, Rea T, Chan IY (2009) On the estimation of average crystallite size of zeolites from the Scherrer equation: a critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous Mesoporous Mater 117:75–90

    Article  CAS  Google Scholar 

  21. Luo J, Zhang Q, Suib SL (2000) Mechanistic and kinetic studies of crystallization of birnessite. Inorg Chem 39(4):741–747

    Article  CAS  Google Scholar 

  22. Luo J, Suib SL (1997) Preparative parameters, magnesium effects, and anion effects in the crystallization of birnessites. J Phys Chem B 101(49):10403–10413

    Article  CAS  Google Scholar 

  23. Drits VA, Silvester E, Gorshkov AI, Manceau A (1997) Structure of synthetic monoclinic Na-rich birnessite and hexagonal birnessite. Am Mineral 82:946–961

    CAS  Google Scholar 

  24. Data Collection of the Joint Committee on Powder Diffraction Standar, pdf number: 80-1098 (CD)

  25. Donne SW, Hollenkamp AF, Jones BC (2010) Structure, morphology and electrochemical behaviour of manganese oxides prepared by controlled decomposition of permanganate. J Power Sources 195:367–373

    Article  CAS  Google Scholar 

  26. Luo J, Huang A, Park SH, Suib SL, O’Young CL (1998) Crystallization of sodium–birnessite and accompanied phase transformation. Chem Mater 10(6):1561–1568

    Article  CAS  Google Scholar 

  27. Zhu HT, Luo J, Yang HX, Liang JK, Rao GH, Li JB, Du ZM (2008) Birnessite-type MnO2 nanowalls and their magnetic properties. J Phys Chem C 112(44):17089–17094

    Article  CAS  Google Scholar 

  28. Gaillot AC, Drits VA, Manceau A, Lanson B (2007) Structure of the synthetic K-rich phyllomanganate birnessite obtained by high-temperature decomposition of KMnO4 substructures of K-rich birnessite from 1000 °C experiment. Microporous Mesoporous Mater 98:267–282

    Article  CAS  Google Scholar 

  29. Vol’khin VV, Leont’eva GV, Bakhireva OI (1998) A method to control structural transformations of manganese(III, IV) oxides. Inorg Mater 14:574–577

    Google Scholar 

  30. Chen R, Zavalij P, Whittingham MS (1996) Hydrothermal synthesis and characterization of KxMnO2•yH2O. Chem Mater 8(6):1275–1280

    Article  CAS  Google Scholar 

  31. Ching S, Welch EJ, Hughes SM, Bahadoor ABF, Suib SL (2002) Nonaqueous sol–gel syntheses of microporous manganese oxides. Chem Mater 14(3):1292–1299

    Article  CAS  Google Scholar 

  32. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619

    Article  CAS  Google Scholar 

  33. Kijima N, Yasuda H, Sato T, Yoshimura Y (2001) Preparation and characterization of open tunnel oxide α-MnO2 precipitated by ozone oxidation. J Solid State Chem 159:94–102

    Article  CAS  Google Scholar 

  34. Gil A, Gandía LM (2003) Microstructure and quantitative estimation of the micropore-size distribution of an alumina-pillared clay from nitrogen adsorption at 77 K and carbon dioxide adsorption at 273 K. Chem Eng Sci 58:3059–3075

    Article  CAS  Google Scholar 

  35. Tian H, He J, Liu L, Wang D, Hao Z, Ma C (2011) Highly active manganese oxide catalysts for low-temperature oxidation of formaldehyde. Microporous Mesoporous Mater 151:397–402

    Article  Google Scholar 

  36. Ghodbane O, Pascal JL, Favier F (2009) Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Appl Mater Interfaces 1(5):1130–1139

    Article  CAS  Google Scholar 

  37. McKenzie RM (1980) The adsorption of lead and other heavy metals on oxides of manganese and iron. J Soil Res 18(1):61–73

    Article  CAS  Google Scholar 

  38. Yin H, Liu F, Feng X, Liu M, Tan W, Qiu G (2011) Co2+-exchange mechanism of birnessite and its application for the removal of Pb2+ and As(III). J Hazard Mater 196:318–326

    Article  CAS  Google Scholar 

  39. Franger S, Bach S, Farcy J, Pereira-Ramos JP, Baffier N (2002) Synthesis, structural and electrochemical characterizations of the sol–gel birnessite MnO1.84•0.6H2O. J Power Sources 109:262–275

    Article  CAS  Google Scholar 

  40. Knauth P (2006) Ionic and electronic conduction in nanostructured solids: concepts and concerns, consensus and controversies. Solid State Ionics 177:2495–2502

    Article  CAS  Google Scholar 

  41. Ohtaki H, Radnai T (1993) Structure and dynamics of hydrated ions. Chem Rev 93(3):1157–1204

    Article  CAS  Google Scholar 

  42. Allnér O, Nilsson L, Villa A (2012) Magnesium ion–water coordination and exchange in biomolecular simulations. J Chem Theory Comput 8:1493–1502

    Article  Google Scholar 

  43. Henn F, Durand C, Cerepi A, Brosse E, Giuntini JC (2007) DC conductivity, cationic exchange capacity, and specific surface area related to chemical composition of pore lining chlorites. J Colloid Interface Sci 311(2):571–578

    Article  CAS  Google Scholar 

  44. Henn F, Devautour-Vinot S, Giuntini JC, Maurin G (2004) Alkali metal bonding energy and activation energy for dc conductivity in porous and glassy solid oxides. J Phys Chem B 108(37):13936–13943

    Article  CAS  Google Scholar 

  45. Lamoureux G, Roux B (2006) Absolute hydration free energy scale for alkali and halide ions established from simulations with a polarizable force field. J Phys Chem B 110(7):3308–3322

    Article  CAS  Google Scholar 

  46. Hohm U, Thakkar AJ (2011) New relationships connecting the dipole polarizability, radius, and second ionization potential for atoms. J Phys Chem A 116:697–703

    Article  Google Scholar 

  47. Fleig J, Maier J (2004) The polarization of mixed conducting SOFC cathodes: effects of surface reaction coefficient, ionic conductivity and geometry. J Eur Ceram Soc 24:1343–1347

    Article  CAS  Google Scholar 

  48. Fleig J (2002) The grain boundary impedance of random microstructures: numerical simulations and implications for the analysis of experimental data. Solid State Ionics 150:181–193

    Article  CAS  Google Scholar 

  49. Jose J, Khadar MA (1999) Impedance spectroscopic analysis of AC response of nanophase ZnO and ZnO–Al2O3 nanocomposites. Nanostruct Mater 11(8):1091–1099

    Article  CAS  Google Scholar 

  50. Horopanitis EE, Perentzis G, Papadimitriou L (2007) Impedance modelling of two-phase solid-state ionic conductors. Part I—theoretical model and computer simulations. J Solid State Electrochem 11:1171–1182

    Article  CAS  Google Scholar 

  51. Jonscher AK (1999) Dielectric relaxation in solids. J Phys D Appl Phys 32(14):R57–R70

    Article  CAS  Google Scholar 

  52. Macdonald DD (2006) Reflections on the history of electrochemical impedance spectroscopy. Electrochim Acta 51:1376–1388

    Article  CAS  Google Scholar 

  53. Choi BK, Lockwood DJ (1989) Ionic conductivity and the phase transitions in Na2SO4. Phys Rev B 40(7):4683–4689

    Article  CAS  Google Scholar 

  54. Ahmad MM, Gaffar MA, Yamada K, Okuda T (2007) Ion dynamics and structure-dependent conductivity scaling properties in polycrystalline. J Phys Chem Solids 68:470–476

    Article  CAS  Google Scholar 

  55. Lee C, Lee S, Sul C, Bae S (1997) Frequency dependence of AC conductivities of KNb1−xVxO3 single crystals. Phys B Condens Matter 239:316–321

    Article  CAS  Google Scholar 

  56. Yamada A, Tanaka M, Tanaka K, Sekai K (1999) Jahn–Teller instability in spinel Li–Mn–O. J Power Sources 81–82:73–78

    Article  Google Scholar 

  57. Giraldo O, Brock SL, Willis WS, Marquez M, Suib SL (2000) Manganese oxide thin films with fast ion-exchange properties. J Am Chem Soc 122(38):9330–9331

    Article  CAS  Google Scholar 

  58. DeGuzman RN, Shen YF, Neth EJ, Suib SL, O’Young CL, Levine S, Newsam JM (1994) Synthesis and characterization of octahedral molecular sieves (OMS-2) having the hollandite structure. Chem Mater 6(6):815–821

    Article  CAS  Google Scholar 

  59. Shen YF, Suib SL, O’Young CL (1994) Effects of inorganic cation templates on octahedral molecular sieves of manganese oxide. J Am Chem Soc 116:11020–11029

    Article  CAS  Google Scholar 

  60. Tamura H (2006) Microwave dielectric losses caused by lattice defects. J Eur Ceram Soc 26:1775–1780

    Article  CAS  Google Scholar 

  61. García NJ, Bazán JC (1996) Conductivity in Na+- and Li+-montmorillonite as a function of equilibration humidity. Solid State Ionics 92:139–143

    Article  Google Scholar 

  62. Frunza L, Kosslick H, Frunza S, Schönhals A (2002) Unusual relaxation behavior of water inside the sodalite cages of faujasite-type molecular sieves. J Phys Chem B 106(36):9191–9194

    Article  CAS  Google Scholar 

  63. Frunza L, Kosslick H, Pitsch I, Frunza S, Schönhals A (2005) Rotational fluctuations of water inside the nanopores of SBA-type molecular sieves. J Phys Chem B 109(18):9154–9159

    Article  CAS  Google Scholar 

  64. Dyre JC, Schrøder TB (2000) Universality of ac conduction in disordered solids. Rev Mod Phys 72(3):873–892

    Article  Google Scholar 

  65. Murugavel S, Vaid C, Bhadram VS, Narayana C (2010) Ion transport mechanism in glasses: non-Arrhenius conductivity and nonuniversal features. J Phys Chem B 114(42):13381–13385

    Article  CAS  Google Scholar 

  66. Ahmed MA, Okasha N, Gabal MA (2006) Electrical transport properties of barium–titanium ferrite with a hollandite structure. Mater Chem Phys 99:197–201

    Article  CAS  Google Scholar 

  67. Goodenough JB (2002) In: Kaplan TA, Mahanti SD (eds) Electron–lattice interactions in manganese-oxide perovskites. Physics of manganites. Springer, US, pp 127–133

    Chapter  Google Scholar 

Download references

Acknowledgments

The work at the Universidad Nacional de Colombia, Branch of Manizales, was supported by the Research Office (DIMA), Facultad de Ingeniería y Arquitectura and Facultad de Ciencias Exactas y Naturales. We also acknowledge the Laboratorio de Química for atomic absorption analysis, Laboratorio de Magnetismo y Materiales Avanzados for the thermal analysis, Engr. David Quijano Duque for the design of Fig. 1, and J. Valencia and Dr J. Ordoñez-Miranda for their suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Giraldo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arias, N.P., Dávila, M.T. & Giraldo, O. Electrical behavior of an octahedral layered OL-1-type manganese oxide material. Ionics 19, 201–214 (2013). https://doi.org/10.1007/s11581-012-0725-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-012-0725-9

Keywords

Navigation