Skip to main content

Advertisement

Log in

Mechanism for improvement in mechanical and thermal stability in dispersed phase polymer composites

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

We report substantial improvement in the mechanical stability, thermal stability, and conductivity of four series of ion-conducting dispersed phase composite polymer electrolytes (CPEs). Tensile strength of filler-dispersed composite films was ≥2 MPa in contrast to ~1 MPa for undispersed polymer–salt complex. Similarly, elongation at break has shown an increase by ~200–300% in the composite films. Filler-induced enhancement in thermal and mechanical stability has clearly been noticed. The improvement in the mechanical stability is also accompanied by a corresponding increase in electrical conductivity in the composite films by 1–2 orders of magnitude at lower (2 wt.%) of the filler loading. A mechanism for the improvement in mechanical stability has been proposed. The strength of the mechanism lies in evidenced polymer–filler interaction among the composite components. Suppression of thermal degradation and increased mechanical strength of the CPEs on filler addition has been explained on the basis of transient cross-linking of the polymeric segments and filler–polymer bridging effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Reiter J, Krejza O, Sedlarikova M (2009) Solar Energy Materials & Solar Cells 93:249–255

    Article  CAS  Google Scholar 

  2. Rajendran S, Babu RS, Sivakumar P (2008) Journal of Membrane Science 315:67–73

    Article  CAS  Google Scholar 

  3. Bhide A, Hariharan K (2007) European Polymer Journal 43:4253–4270

    Article  CAS  Google Scholar 

  4. Zhou S, Fang S (2007) European Polymer Journal 43:3695–3700

    Article  CAS  Google Scholar 

  5. Geiculescu OE, Yang J, Blau H, Walsh RB, Creager SE, Pennington WT, Desmarteau DD (2002) Solid State Ionics 148:173–183

    Article  CAS  Google Scholar 

  6. Mohapatra SR, Thakur AK, Choudhary RNP (2009) Journal of Power Sources 191:601–613

    Article  CAS  Google Scholar 

  7. Wang Y, Ma X, Zhang Q, Tian N (2010) Journal of Membrane Science 349:279–286

    Article  CAS  Google Scholar 

  8. Osinska M, Walkowiak M, Zalewskab A, Jesionowski T (2009) Journal of Membrane Science 326:582–588

    Article  CAS  Google Scholar 

  9. Weston JE, Steele BCH (1982) Solid State Ionics 7:75

    Article  CAS  Google Scholar 

  10. Fan L, Nan CW, Zhao S (2003) Solid State Ionics 164:81

    Article  CAS  Google Scholar 

  11. Yerian JA, Khan SA, Fedkiw PS (2004) J Power Sources 135:232

    Article  CAS  Google Scholar 

  12. Kim JH, Kang MS, Kim YJ, Won JP, Nam GKYS (2004) Chemical Comm 14:1662

    Article  Google Scholar 

  13. Zhang S, Lee JY, Hong L (2004) J Power Sources 126:125

    Article  CAS  Google Scholar 

  14. Liu Y, Lee JY, Hong L (2004) J Power Sources 129:303

    Article  CAS  Google Scholar 

  15. Shin JH, Jung BS, Jeong SS, Kim KW, Ahn HJ, Cho KK (2004) Metals Mater Int 10:177

    Article  CAS  Google Scholar 

  16. Chung NK, Kwon YD, Kim D (2003) J Power Sources 124:148

    Article  CAS  Google Scholar 

  17. Thakur AK (2001) Ph.D. thesis, NEHU Shillong, India

  18. Thakur AK, Hashmi SA, Upadhyaya HM, Verma AL (1999) Ind J Pure Appl Phys 37:302

    CAS  Google Scholar 

  19. Hashmi SA, Upadhyaya HM, Thakur AK, Verma AL (2000) Ionics 6:248

    Article  CAS  Google Scholar 

  20. Wieczorek W, Lipka P, Zulowska G, Wycislik HJ (1998) Phys Chem B 102:6968

    Article  CAS  Google Scholar 

  21. Wieczorek W, Zaleswka A, Raducha D, Florjanczyk Z, Stevens JR, Ferry A, Jacobsson PP (1996) Macromolecules 29:143

    Article  CAS  Google Scholar 

  22. Kim S, Park SJ (2007) Solid State Ionics 178:973–979

    Article  CAS  Google Scholar 

  23. Ray SS, Okamoto M (2003) Prog Polym Sci 28:1539–1641

    Article  CAS  Google Scholar 

  24. Choi BK, Shin K (1996) Solid State Ionics 86–88:303

    Article  Google Scholar 

  25. Albinson I, Mellander BE (1993) Solid State Ionics 60:63

    Article  Google Scholar 

  26. Petersen G, Torrel LM, Panero S, Scrosati B, Dasilva CJ, Smith M (1993) Solid State Ionics 60:55

    Article  CAS  Google Scholar 

  27. Bruce PG, Shriver DF, Gray FM (1995) Solid state electrochemistry. Cambridge University Press, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Awalendra K. Thakur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thakur, A.K. Mechanism for improvement in mechanical and thermal stability in dispersed phase polymer composites. Ionics 17, 109–120 (2011). https://doi.org/10.1007/s11581-010-0498-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-010-0498-y

Keywords

Navigation