Skip to main content
Log in

A study on the role of BaTiO3 in lithum bis(perfluoroethanesulfonyl)imide-based PVDF-HFP nanocomposites

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium bis(perfluoroethanesulfonyl)imide (BETI; guest species)-based polyvinylidenefluoride-hexafluoropropylene (PVDF-HFP) (host matrix) polymer nanocomposites (PNC) films by loading barium titanate (BaTiO3) as a filler in ascending proportions with plasticizer (mixture of EC + DMC) while keeping host and guest content as constants has been investigated by employing AC impedance, thermal, X-ray diffraction (XRD), phase morphology, and Fourier transform infrared (FTIR) studies. The ionic conductivity measurements on these PNC show that 2.5% BaTiO3-loaded polymer nanocomposites (PNC) showed mitigation in magnitude of the conductivity compared with that of 0 wt.% loaded PNC; but increase in conductivity is noted thereafter with increase in filler content of up to 7.5 wt.%. The higher conductivity is observed for 7.5% filler-loaded membrane. The XRD study identifies suppression of polymer phase associated with (200) plane. The SEM image illustrates inhomogeneity in surface morphologies for PNCs with the filler dispersed. The thermal profile registers the endothermic changes associated with polymer host indicating a varying heat of fusion ∆Hm with filler increase. FTIR studies confirm possible interaction between various constituents of the PNCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mac Callum JR, Vincent CA (1979) Polymer electrolyte reviews 1 and 2. Elsevier, New York

    Google Scholar 

  2. Nagatomo T, Ichikawa C, Omato O (1987) All-plastic batteries with polyacetylene electrodes. J Electrochem Soc 134:305–308

    Article  CAS  Google Scholar 

  3. Michot T, Nishimoto A, Watanabe M (2000) Electrochemical properties of polymer gel electrolytes based on poly(vinylidene fluoride) copolymer and homopolymer. Electrochim Acta 45:1347–1360

    Article  CAS  Google Scholar 

  4. Croce F, Dautzemberg G, Passerini S, Appetecchi GB, Scrosati B (1994) Synthesis and characterization of highly conducting gel electrolytes. Electrochim Acta 39:2187–2194

    Article  CAS  Google Scholar 

  5. Abraham KM, Alamgir M (1990) Li + -conductive solid polymer electrolytes with liquid-like conductivity. J Electrochem Soc 137:1657–1658

    Article  CAS  Google Scholar 

  6. Sukeshini AM, Nishimoto A, Watanabe M (1996) Transport and electrochemical characterization of plasticized poly(vinyl chloride) solid electrolytes. Solid State Ionics 86–88:385

    Article  Google Scholar 

  7. Appetecchi GB, Dautzenberg G, Scrosati B (1996) A new class of advanced polymer electrolytes and their relevance in plastic-like, rechargeable lithium batteries. J Electrochem Soc 143:6–12

    Article  CAS  Google Scholar 

  8. Kim HT, Kim KB, Kim SW, Park JK (2000) Li-ion polymer battery based on phase-separated gel polymer electrolyte. Electrochim Acta 45:4001–4007

    Article  CAS  Google Scholar 

  9. Quartarone E, Brusa M, Mustarelli P, Magistris CT (1998) Preparation and characterization of fluorinated hybrid electrolytes. Electrochim Acta 44:677–681

    Article  CAS  Google Scholar 

  10. Capiglia C, Saito Y, Yamamoto H, Kageyama H, Mustarelli P (2000) Transport properties and microstructure of gel polymer electrolytes. Electrochim Acta 45:1341–1345

    Article  CAS  Google Scholar 

  11. Raghavan P, Zhao X, Kim J-K, Manuel J, Chauhan GS, Ahn J-H, Nah C (2006) Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoropropylene) with nano-sized ceramic fillers. Electrochim Acta 54:228–234

    Article  Google Scholar 

  12. Capglia C, Saito Y, Kataoka H, Kodama T, Quartarone E, Mustarelli P (2000) Structure and transport properties of polymer gel electrolytes based on PVdF-HFP and LiN(C2F5SO2)2. Solid State Ionics 131:291–299

    Article  Google Scholar 

  13. Sun HY, Takeda Y, Imanishi N, Yamamoto O, Sohn H (2000) Ferroelectric materials as a ceramic filler in solid composite polyethylene oxide-based electrolytes. J Electrochem Soc 147:2462–2467

    Article  CAS  Google Scholar 

  14. Li Q, Takeda Y, Imanishi N, Yang J, Sun JY, Yamamoto O (2001) Cycling performances and interfacial properties of a Li/PEO-Li(CF3SO2)2N-ceramic filler/LiNi0.8Co0.2O2 cell. J Power Sources 97–98:795–797

    Article  Google Scholar 

  15. Agrawal RC, Gupta RK (1999) Detailed investigation of the temperature dependence of ionic transport parameters of a new composite electrolyte system (1 − ×) (0.75AgI: 0.25AgCl): xSnO2. J Mater Sci 34:1131–1162

    Article  CAS  Google Scholar 

  16. Mikrajuddin A, Shi G, Okuyama K (2000) Electrical conduction in insulator particle—solid-state ionic and conducting particle-insulator matrix composites a unified theory. J Electrochem Soc 147:3157–3165

    Article  CAS  Google Scholar 

  17. Knauth P (2000) Ionic conductor composites: theory and materials. J Electro Ceram 5:111–125

    CAS  Google Scholar 

  18. Hasegawa R, Takahashi Y, Chatani Y, Tadokoro H (1972) Joint Committee on Powder Diffraction Standards (JCPDS) card no421651. Polym. J. 3, 600

  19. Agnihotry SA, Ahmad S, Gupta D, Ahmad S (2004) Composite gel electrolytes based on poly(methylmethacrylate) and hydrophilic fumed silica. Electrochim Acta 49:2343–2349

    Article  CAS  Google Scholar 

  20. Ahmad S, Deepa M, Agnihotry SA (2008) Effect of salts on the fumed silica-based composite polymer electrolytes. Sol Energy Mater Sol Cells 92:184–189

    Article  CAS  Google Scholar 

  21. Marand L, Stein RS, Stack GM (1988) Isothermal crystallization of poly(vinylidene fluoride) in the presence of high static electric fields. I. Primary nucleation phenomenon. J Polymer Phys Sci 26:1361–1366

    Article  CAS  Google Scholar 

  22. Quist AS, Bates JB, Boyed GE (1971) J Chem Phys 54:4896

    Article  CAS  Google Scholar 

  23. Aravindan V, Vickraman P, Premkumar T (2008) Polyvinylidene fluoride–hexafluoropropylene (PVdF–HFP)-based composite polymer electrolyte containing LiPF3(CF3CF2)3. J Non-cryst Solids 354:3451–3457

    Article  CAS  Google Scholar 

  24. Wang Z, Haung B, Huang H, Chen L, Xue R, Wang F (1996) Investigation of the position of Li + ions in a polyacrylonitrile-based electrolyte by Raman and infrared spectroscopy. Electrochim Acta 41:1443–1446

    Article  CAS  Google Scholar 

  25. Dohany JE, Humphrey JS (1989) In: Kroschwitz JI (ed) Encyclopedia of polymer science and engineering, Vol 17, 2nd edn. Wiley, New York, p 532

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Vickraman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vickraman, P., Senthilkumar, V. A study on the role of BaTiO3 in lithum bis(perfluoroethanesulfonyl)imide-based PVDF-HFP nanocomposites. Ionics 16, 763–768 (2010). https://doi.org/10.1007/s11581-010-0467-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-010-0467-5

Keywords

Navigation