Skip to main content
Log in

XPS and ionic conductivity studies on Li1.3Al0.15Y0.15Ti1.7(PO4)3 ceramics

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Li1.3Al0.15Y0.15Ti1.7(PO4)3 compound was synthesized by solid-state reaction, and ceramics were sintered. The surfaces of the ceramics were investigated by scanning electron microscopy and X-ray photoelectron spectroscopy. Li1.3Al0.15Y0.15Ti1.7(PO4)3 samples were tested in solid galvanic cells Ag|O2+CO2|Li2CO3|Li1.3Al0.15Y0.15Ti1.7(PO4)3|LiMnO2+Mn2O3|O2|Ag. The electromotive force measurements of this cell indicated that investigated samples are practically pure Li-ion conductors. Impedance spectroscopy studies have been performed in the frequency range 10−2–3·109 Hz and temperatures from −57 °C to 334 °C. Three dispersion regions related to Li+ ionic transport in bulk, grain boundaries of the ceramics and to polarization of electrodes have been found. Total conductivity changes according to Arrhenius law in the studied temperature range, but an anomalous behavior was observed for the bulk conductivity of the ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Thangadurai V, Schwenzel J, Weppner W (2005) Tailoring ceramics for specific applications: a case study of the development of all-solid-state lithium batteries. Ionics 11:11–23

    Article  CAS  Google Scholar 

  2. Chu W-F, Thangadurai V, Weppner W (2006) Ionics—a key technology for our energy and environmental needs on the rise. Ionics 12:1–6. doi:10.1007/s11571-006-0015-5

    Article  CAS  Google Scholar 

  3. Cretin M, Fabry P (1999) Comparative study of lithium ion conductors in the system Li1+xAlxA IV2–x (PO4)3 with AIV = Ti or Ge and 0 ≤ × ≤ 0.7 for use as Li+ sensitive membranes. J Eur Ceram Soc 19:2931–2940

    Article  CAS  Google Scholar 

  4. Birke P, Salam F, Döring S, Weppner W (1999) A first approach to a monolithic all solid state inorganic lithium battery. Solid State Ion 118:149–157

    Article  CAS  Google Scholar 

  5. Zaghib K, Mauger A, Gendron F, Julien CM (2008) Magnetic studies of phospho-olivine electrodes in relation with their electrochemical performance in Li-ion batteries. Solid State Ion 179:16–23. doi:10.1016/j.ssi.2007.12.071

    Article  CAS  Google Scholar 

  6. Aono H, Sugimoto E, Sadaoka Y, Imanaka N, G-y A (1990) Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J Electrochem Soc 137:1023–1027

    Article  CAS  Google Scholar 

  7. Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G-Y (1990) Ionic conductivity and sinterability of lithium titanium phosphate system. Solid State Ion 40/41:38–42

    Article  Google Scholar 

  8. Arbi K, Rojo JM, Sanz J (2007) Lithium mobility in titanium based Nasicon Li1+xTi2−xAlx(PO4)3 and LiTi2−xZrx(PO4)3 materials followed by NMR and impedance spectroscopy. J Eur Ceram Soc 27:4215–4218

    Article  CAS  Google Scholar 

  9. Arbi K, Lazarraga MG, Ben Hassen Chehimi D, Ayadi-Trabelsi M, Rojo JM, Sanz J (2004) Lithium mobility in Li1.2Ti1.8R0.2(PO4)3 compounds (R = Al, Ga, Sc, In) as followed by NMR and impedance spectroscopy. Chem Mater 16:255–262

    Article  CAS  Google Scholar 

  10. Best AS, Forsyth M, MacFarlane DR (2000) Stoichiometric changes in lithium conducting materials based on Li1+xAlxTi2–x(PO4)3: impedance, X-ray and NMR studies. Solid State Ion 136–137:339–344

    Article  Google Scholar 

  11. Xu X, Wen Z, Wu J, Yang X (2007) Preparation and electrical properties of NASICON-type structured Li1.4Al0.4Ti1.6(PO4)3 glass-ceramics by the citric acid-assisted sol–gel method. Solid State Ion 178:29–34

    Article  CAS  Google Scholar 

  12. Xu X, Wen Z, Gu Z, Xu X, Lin Z (2004) Lithium ion conductive glass ceramics in the system Li1.4Al0.4(Ge1–xTix)1.6(PO4)3 (x = 0–1.0). Solid State Ion 171:207–213

    Article  CAS  Google Scholar 

  13. Mouahid FE, Zahir M, Maldonado-Manso P, Bruque S, Losilla ER, Aranda MAG, Rivera A, Leon C, Santamaria J (2001) J Mater Chem 11:3258–3263

    Article  CAS  Google Scholar 

  14. Dindune A, Kanepe Z, Kazakevičius E, Kežionis A, Ronis J, Orliukas AF (2003) Synthesis and electrical properties of Li1+xMxTi2–x(PO4)3 (where M = Sc, Al, Fe, Y; x = 0.3) superionic ceramics. J. Solid State Electrochem 7:113–117

    CAS  Google Scholar 

  15. Kazakevičius E, Dindune A, Kanepe Z, Ronis J, Orliukas A, Kežionis A, Šalkus T (2005) Impedance spectra of Li1.3Sc0.15Y0.15Ti1.7(PO4)3 solid electrolyte ceramics in a broad frequency range. Solid State Ion 176:1743–1746

    Article  Google Scholar 

  16. Šalkus T, Kazakevičius E, Kežionis A, Dindune A, Kanepe Z, Ronis J, Emery J, Boulant A, Bohnke O, Orliukas AF (2009) Peculiarities of ionic transport in Li1.3Al0.15Y0.15Ti1.7(PO4)3 ceramics. J Phys: Condens Matter 21:185502. doi:10.1088/0953-8984/21/18/185502

    Article  Google Scholar 

  17. Róg G, Kucza W, Kozłowska-Róg A (2004) The standard Gibbs free energy of formation of lithium manganase oxides at the temperatures (680, 740 and 800) K. J Chem Thermodyn 36:473–476

    Article  Google Scholar 

  18. Mukhopadhyay S, Jacob KT (1994) Gradient solid electrolytes for thermodynamic measurements: system Na2CO3-Na2SO4. Metall Mater Trans A 25:173–181

    Article  Google Scholar 

  19. Qi-Hui Wu, Jin-Mei Xu, Zhuang Q-C, Sun S-G (2006) X-ray photoelectron spectroscopy of LiM0.05Mn1.95O4 (M = Ni, Fe and Ti). Solid State Ion 177:1483–1488

    Article  Google Scholar 

  20. Chowdari BVR, Subba Rao GV, Lee GYH (2000) XPS and ionic conductivity studies on Li2O–Al2O3–(TiO2 or GeO2)–P2O5 glass–ceramics. Solid State Ion 136–137:1067–1075

    Article  Google Scholar 

  21. Qing X, Huang D-P, Chen W, Wang H, Wang B-T, Yuan R-Z (2004) X-ray photoelectron spectroscopy investigation on chemical states of oxygen on surfaces of mixed electronic–ionic conducting La0.6Sr0.4Co1−y Fe y O3 ceramics. Appl Surf Sci 228:110–114

    Article  Google Scholar 

  22. Simon V, Eniu D, Takács A, Magyari K, Neumann M, Simon S (2005) X-ray photoemission study of yttrium contained in radiotherapy systems. J Optoelectron Adv Mater 7:2853–2857

    CAS  Google Scholar 

  23. Cheng C-W, Fitzgerald EA (2008) In situ metal-organic chemical vapor deposition atomic-layer deposition of aluminum oxide on GaAs using trimethyaluminum and isopropanol precursors. Appl Phys Lett 93:031902. doi:10.1063/1.2960574

    Article  Google Scholar 

  24. Swiatowska-Mrowiecka J, de Diesbach S, Maurice V, Zanna S, Klein L, Briand E, Vickridge I, Marcus P (2008) Li-ion intercalation in thermal oxide thin films of MoO3 as studied by XPS, RBS, and NRA. J Phys Chem C 112:11050–11058

    Article  CAS  Google Scholar 

  25. Luo J-Y, Chen L-J, Zhao Y-J, He P, Xia Y-Y (2009) The effect of oxygen vacancies on the structure and electrochemistry of LiTi2(PO4)3 for lithium-ion batteries: a combined experimental and theoretical study. J Power Sources 194:1075–1080

    Article  CAS  Google Scholar 

  26. Arbi K, Tabellout M, Lazarraga MG, Rojo JM, Sanz J (2005) Non-Arrhenius conductivity in the fast lithium conductor Li1.2Ti1.8Al0.2(PO4)3: A 7Li NMR and electric impedance study. Phys Rev B 72:094302

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Lithuanian State Science and Studies Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Šalkus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šalkus, T., Kazakevičius, E., Kežionis, A. et al. XPS and ionic conductivity studies on Li1.3Al0.15Y0.15Ti1.7(PO4)3 ceramics. Ionics 16, 631–637 (2010). https://doi.org/10.1007/s11581-010-0433-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-010-0433-2

Keywords

Navigation