Skip to main content
Log in

Oxygen ion transport numbers: assessment of combined measurement methods

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Several modifications of the faradaic efficiency and electromagnetic field (EMF) methods, taking electrode polarisation resistance into account, were considered based on the analysis of ion transport numbers and p-type electronic conductivity of \( {\left( {{\text{La}}_{{0.9}} {\text{Sr}}_{{0.1}} } \right)}_{{0.98}} {\text{Ga}}_{{0.8}} {\text{Mg}}_{{0.2}} {\text{O}}_{{3 - \delta }} \) ceramics at 973–1,223 K. In air, the activation energies for p-type electronic and oxygen ionic transport are 115 ± 9 and 71 ± 5 kJ/mol, respectively. The oxygen ion transference numbers vary in the range 0.992–0.999, increasing when oxygen pressure or temperature decreases. The apparent electronic contribution to the total conductivity, estimated from the classical faradaic efficiency and EMF techniques was considerably higher than true transference numbers due to a non-negligible role of interfacial exchange processes. The modified measurement routes give reliable and similar results when p(O2) values at the electrodes are high enough, whilst decreasing the oxygen pressure leads to a systematic error for all techniques associated with measurements of concentration cell EMF. This effect, presumably due to diffusion polarisation, increases with decreasing temperature. The most reliable results in the studied p(O2) range were provided by the modified faradaic efficiency method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kinoshita K (1992) Electrochemical oxygen technology. Wiley, New York

    Google Scholar 

  2. Yamamoto O (2000) Electrochim Acta 45:2423

    Article  CAS  Google Scholar 

  3. Huijsmans JPP (2001) Curr Opin Solid State Mater Sci 5:317

    Article  CAS  Google Scholar 

  4. Badwal SPS, Ciacchi FT (2001) Adv Mater 13:993

    Article  CAS  Google Scholar 

  5. Dyer PN, Richards RE, Russek SL, Taylor DM (2000) Solid State Ion 134:21

    Article  CAS  Google Scholar 

  6. der Otter MW, Bouwmeester HJM, Boukamp BA, Verweij H (2001) J Electrochem Soc 148:J1

    Article  Google Scholar 

  7. Fielitz P, Borchardt G (2001) Solid State Ion 144:71

    Article  CAS  Google Scholar 

  8. Stephens WT, Mazanec TJ, Anderson HU (2000) Solid State Ion 129:271

    Article  CAS  Google Scholar 

  9. Vashook VV, Al Daroukh M, Ullmann H (2001) Ionics 7:59

    Article  CAS  Google Scholar 

  10. Kharton VV, Marques FMB (2001) Solid State Ion 140:381

    Article  CAS  Google Scholar 

  11. Gorelov VP (1988) Elektrokhimiya 24:1380 [in Russian]

    CAS  Google Scholar 

  12. Liu M, Hu H (1996) J Electrochem Soc 143:L109

    Article  CAS  Google Scholar 

  13. ten Elshof JE, Lankhorst MHR, Bouwmeester HJM (1997) J Electrochem Soc 144:1060

    Article  Google Scholar 

  14. Guan J, Dorris SE, Balachandran U, Liu M (1998) Solid State Ion 110:303

    Article  CAS  Google Scholar 

  15. Kim S, Wang S, Chen X, Yang YL, Wu N, Ignatiev A, Jacobson AJ, Abeles B (2000) J Electrochem Soc 147:2398

    Article  CAS  Google Scholar 

  16. Kharton VV, Tikhonovich VN, Shuangbao Li, Naumovich EN, Kovalevsky AV, Viskup AP, Bashmakov IA, Yaremchenko AA (1998) J Electrochem Soc 145:1363

    Article  CAS  Google Scholar 

  17. Kharton VV, Viskup AP, Kovalevsky AV, Figueiredo FM, Jurado JR, Yaremchenko AA, Naumovich EN, Frade JR (2000) J Mater Chem 10:1161

    Article  CAS  Google Scholar 

  18. Kharton VV, Viskup AP, Figueiredo FM, Naumovich EN, Yaremchenko AA, Marques FMB (2001) Electrochim Acta 46:2879

    Article  CAS  Google Scholar 

  19. Marques RMC, Marques FMB, Frade JR (1994) Solid State Ion 73:15

    Article  CAS  Google Scholar 

  20. Marques RMC, Marques FMB, Frade JR (1994) Solid State Ion 73:27

    Article  CAS  Google Scholar 

  21. Kharton VV, Naumovich EN, Nikolaev AV (1996) Solid State Ion 83:301

    Article  CAS  Google Scholar 

  22. Kharton VV, Viskup AP, Naumovich EN, Lapchuk NM (1997) Solid State Ion 104:67

    Article  CAS  Google Scholar 

  23. Ishihara T, Matsuda H, Takita Y (1994) J Am Chem Soc 116:3801

    Article  CAS  Google Scholar 

  24. Stevenson JW, Armstrong TR, Pederson LR, Li J, Lewinsohn CA, Baskaran S (1997) J Electrochem Soc 144:3613

    Article  CAS  Google Scholar 

  25. Huang K, Tichy RS, Goodenough JB (1998) J Am Ceram Soc 81:2565

    CAS  Google Scholar 

  26. Kim J-H, Yoo H-I (2001) Solid State Ion 140:105

    Article  CAS  Google Scholar 

  27. Yamaji K, Horita T, Ishikawa M, Sakai N, Yokokawa H, Dokiya M (1997) In: Stimming U, Singhal SC, Tagawa H, Lehnert W (eds) SOFC-V. The Electrochemical Society, Pennington, PV 97–40, pp 1041–1050

    Google Scholar 

  28. Kharton VV, Shaula AL, Vyshatko NP, Marques FMB (2003) Electrochim Acta 48:1817

    Article  CAS  Google Scholar 

  29. Kovalevsky AV, Kharton VV, Tikhonovich VN, Naumovich EN, Tonoyan, AA, Reut OP, Boginsky LS (1998) Mater Sci Eng B 52:105

    Article  Google Scholar 

  30. Fagg DP, Kharton VV, Frade JR, Ferreira AAL (2003) Solid State Ion 156:45

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by FCT, Portugal and the NoE FAME (CEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. B. Marques.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharton, V.V., Shaula, A.L. & Marques, F.M.B. Oxygen ion transport numbers: assessment of combined measurement methods. Ionics 13, 163–171 (2007). https://doi.org/10.1007/s11581-007-0089-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-007-0089-8

Keywords

Navigation