Skip to main content
Log in

Memory retention in pyramidal neurons: a unified model of energy-based homo and heterosynaptic plasticity with homeostasis

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

The brain can learn new tasks without forgetting old ones. This memory retention is closely associated with the long-term stability of synaptic strength. To understand the capacity of pyramidal neurons to preserve memory under different tasks, we established a plasticity model based on the postsynaptic membrane energy state, in which the change in synaptic strength depends on the difference between the energy state after stimulation and the resting energy state. If the post-stimulation energy state is higher than the resting energy state, then synaptic depression occurs. On the contrary, the synapse is strengthened. Our model unifies homo- and heterosynaptic plasticity and can reproduce synaptic plasticity observed in multiple experiments, such as spike-timing-dependent plasticity, and cooperative plasticity with few and common parameters. Based on the proposed plasticity model, we conducted a simulation study on how the activation patterns of dendritic branches by different tasks affect the synaptic connection strength of pyramidal neurons. We further investigate the formation mechanism by which different tasks activate different dendritic branches. Simulation results show that compare to the classic plasticity model, the plasticity model we proposed can achieve a better spatial separation of different branches activated by different tasks in pyramidal neurons, which deepens our insight into the memory retention mechanism of brains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abraham WC, Goddard GV (1983) Asymmetric relations between homosynaptic long-term potentiation and heterosynaptic long-term depression. Nature 305:717–719

    Article  CAS  PubMed  Google Scholar 

  • Abraham WC, Robins A (2005) Memory retention-the synaptic stability versus plasticity dilemma. Trends Neurosci 28:73–78

    Article  CAS  PubMed  Google Scholar 

  • Abraham WC, Logan B, Wolff A, Benuskova L (2007) Heterosynaptic. LTD in the dentate gyrus of anesthetized rat requires homosynaptic activity, J Neurophysiol 98(2):1048–1051

    PubMed  Google Scholar 

  • Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145

    Article  CAS  PubMed  Google Scholar 

  • Benna MK, Fusi S (2016) Computational principles of synaptic memory consolidation. Nat Neurosci 19(2):1697–1706

    Article  CAS  PubMed  Google Scholar 

  • Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2:32–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bliss TVP, Lømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bono J, Clopath C (2017) Modeling somatic and dendritic spike mediated plasticity at the single neuron and network level. Nat Commun 8:706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Campanac E, Daoudal G, Ankri N, Debanne D (2008) Down regulation of dendritic I(h) in CA1 pyramidal neurons after LTP. J Neurosci 28:8635–8643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JY, Lonjers P, Lee C, Chistiakova M, Volgushev M, Bazhenov M (2013) Heterosynaptic plasticity prevents runaway synaptic dynamics. J Neurosci 33(40):15915–15929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chistiakova M, Volgushev M (2009) Heterosynaptic plasticity in the neocortex. Exp Brain Res 199:377–390

    Article  PubMed  PubMed Central  Google Scholar 

  • Chistiakova M, Bannon NM, Chen JY, Bazhenov M, Volgushev M (2015) Homeostatic role of heterosynaptic plasticity: models and experiments. Front Comput Neurosci 9:89

    Article  PubMed  PubMed Central  Google Scholar 

  • Cichon J, Gan WB (2015) Branch-specific dendritic Ca2 + spikes cause persistent synaptic plasticity. Nature 520:180–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clopath C, Büsing L, Gerstner Vasilaki E (2010) Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nat Neurosci 13:344–352

    Article  CAS  PubMed  Google Scholar 

  • Debanne D, Inglebert Y, Russier M (2019) Plasticity of intrinsic neuronal excitability. Curr Opin Neurobiol 54:73–82

    Article  CAS  PubMed  Google Scholar 

  • Dudek SM, Bear MF (1992) Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc Natl Acad Sci USA 89:4363–4367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eberhardt F, Herz AVM, Häusler S (2019) Tuft dendrites of pyramidal neurons operate as feedback-modulated functional subunits. PLoS Comput Biol 15(3):e1006757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fletcher LN, Williams SR (2019) Neocortical topology governs the dendritic integrative capacity of layer 5 pyramidal neurons. Neuron 101:76–90

    Article  CAS  PubMed  Google Scholar 

  • Froemke R, Poo MM, Dan Y (2005) Spike-timing-dependent synaptic plasticity depends on dendritic location. Nature 434:221–225

    Article  CAS  PubMed  Google Scholar 

  • Gasselin C, Inglebert Y, Ankri N, Debanne D (2017) Plasticity of intrinsic excitability during LTD is mediated by bidirectional changes in h-channel activity. Sci Rep 7:14418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Golding NL, Staff NP, Spruston N (2002) Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418:326–331

    Article  CAS  PubMed  Google Scholar 

  • Goodman D, Brette R (2009) The Brian simulator. Front Neurosci 3(2):192–197

    Article  PubMed  PubMed Central  Google Scholar 

  • Graupner M, Brunel N (2012) Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location. Proc Natl Acad Sci USA 109:3991–3996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallermann S, de Kock CPJ, Stuart GJ, Kole MHP (2012) State and location dependence of action potential metabolic cost in cortical pyramidal neurons. Nat Neurosci 15:1007–1014

    Article  CAS  PubMed  Google Scholar 

  • Harris JJ, Jolivet R, Attwell D (2012) Synaptic energy use and supply. Neuron 75:762–777

    Article  CAS  PubMed  Google Scholar 

  • Hasenstaub A, Otte S, Callaway E, Sejnowski TJ (2010) Metabolic cost as a unifying principle governing neuronal biophysics. Proc Natl Acad Sci USA 107:12329–12334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howarth C, Gleeson P, Attwell D (2012) Updated energy budgets for neural computation in the neocortex and cerebellum. J Cereb Blood Flow Metab 32:1222–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humble J, Hiratsuka K, Kasai H, Toyoizumi T (2019) Intrinsic spine dynamics are critical for recurrent network learning in models with and without autism spectrum disorder. Front Comput Neurosci 13:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Jedlicka P, Benuskova L, Abraham WC (2015) A voltage-based STDP rule combined with fast BCM-like metaplasticity accounts for LTP and concurrent “Heterosynaptic” LTD in the dentate gyrus in vivo. PLoS Comput Biol 11(11):e1004588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laughlin SB (2001) Energy as a constraint on the coding and processing of sensory information. Curr Opin Neurobiol 11:475–480

    Article  CAS  PubMed  Google Scholar 

  • Lee CM, Stoelzel C, Chistiakova M, Volgushev M (2012) Heterosynaptic plasticity induced by intracellular tetanisation in layer2/3 pyramidal neurons in rat auditory cortex. J Physiol 590:2253–2271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letzkus JJ, Kampa BM, Stuart GJ (2006) Learning rules for spike timing dependent plasticity depend on dendritic synapse location. J Neurosci 26:10420–10429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisman J, Cooper K, Sehgal M, Silva AJ (2018) Memory formation depends on both synapse-specific modifications of synaptic strength and cell-specific increases in excitability. Nat Neurosci 21:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch GS, Dunwiddie T, Gribkoff V (1977) Heterosynaptic depression: a postsynaptic correlate of long-term potentiation. Nature 266:737–739

    Article  CAS  PubMed  Google Scholar 

  • Masse NY, Gregory DG, Freedman DJ (2018) Alleviating catastrophic forgetting using context-dependent gating and synaptic stabilization. Proc Natl Acad Sci USA 115(44):E10467–E10475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris RGM et al (2003) Elements of a neurobiological theory of the hippocampus: the role of activity-dependent synaptic plasticity in memory. Philos Trans R Soc Lond B Biol Sci 358:773–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neves G, Cooke SF, Bliss TV (2008) Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 9:65–75

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell C, Nolan MF, van Rossum MC (2011) Dendritic spine dynamics regulate the long-term stability of synaptic plasticity. J Neurosci 31(45):16142–16156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petreanu L, Mao T, Sternson SM, Svoboda K (2009) The subcellular organization of neocortical excitatory connections. Nature 457:1142–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfister JP, Gerstner W (2006) Triplets of spikes in a model of spike timing–dependent plasticity. J Neurosci 26:9673–9682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poirazi P, Brannon T, Mel BW (2003) Pyramidal neuron as two-layer neural network. Neuron 37:989–999

    Article  CAS  PubMed  Google Scholar 

  • Polsky A, Mel BW, Schiller J (2004) Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci 7:621–627

    Article  CAS  PubMed  Google Scholar 

  • Royer S, Paré D (2003) Conservation of total synaptic weight through balanced synaptic depression and potentiation. Nature 422:518–522

    Article  CAS  PubMed  Google Scholar 

  • Shouval HZ, Bear MF, Cooper LN (2002) A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc Natl Acad Sci USA 99:10831–10836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sjöström PJ, Häusser M (2006) A Cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons. Neuron 51:227–238

    Article  PubMed  CAS  Google Scholar 

  • Sjöström PJ, Turrigiano GG, Nelson SB (2001) Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32:1149–1164

    Article  PubMed  Google Scholar 

  • Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9:206–221

    Article  CAS  PubMed  Google Scholar 

  • Turrigiano GG (2012) Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb Perspect Biol 4:1–18

    Article  CAS  Google Scholar 

  • Turrigiano GG, Nelson SB (2004) Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5:97–107

    Article  CAS  PubMed  Google Scholar 

  • Volgushev M, Chen JY, Ilin V, Goz R, Chistiakova M, Bazhenov M (2016) Partial breakdown of input specificity of STDP at individual synapses promotes new learning. J Neurosci 36(34):8842–8855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang RB, Wang ZY (2018) The essence of neuronal activity from the consistency of two different neuron models. Nonlinear Dyn 92(3):973–982

    Article  Google Scholar 

  • Wang HX, Gerkin RC, Nauen DW, Bi GQ (2005) Coactivation and timing dependent integration of synaptic potentiation and depression. Nat Neurosci 8:187–193

    Article  CAS  PubMed  Google Scholar 

  • Wang RB, Tsuda I, Zhang ZK (2015) A new work mechanism on neuronal activity. Int J Neural Syst 25(3):1450037

    Article  PubMed  Google Scholar 

  • Wang YH, Wang RB, Zhu YT (2017) Optimal path-finding through mental exploration based on neural energy field gradients. Cogn Neurodyn 11(1):99–111

    Article  PubMed  Google Scholar 

  • Xu NL et al (2012) Nonlinear dendritic integration of sensory and motor input during an active sensing task. Nature 492:247–251

    Article  CAS  PubMed  Google Scholar 

  • Zenke FE, Agnes J, Gerstner W (2015) Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks. Nat Commun 6:7922

    Article  CAS  Google Scholar 

  • Zenke FE, Gerstner W, Ganguli S (2017) The temporal paradox of Hebbian learning and homeostatic plasticity. Curr Opin Neurobiol 43:166–176

    Article  CAS  PubMed  Google Scholar 

  • Zhu FY, Wang RB (2019) Energy expenditure computation of a single bursting neuron. Cogn Neurodyn 13(1):75–87

    Article  PubMed  Google Scholar 

  • Zhu ZY, Wang RB, Zhu FY (2018) The energy coding of a structural neural network based on the Hodgkin-Huxley model. Front Neurosci 12:122

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61572529.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanwen Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Xie, L., Wang, Y. et al. Memory retention in pyramidal neurons: a unified model of energy-based homo and heterosynaptic plasticity with homeostasis. Cogn Neurodyn 15, 675–692 (2021). https://doi.org/10.1007/s11571-020-09652-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-020-09652-z

Keywords

Navigation