Skip to main content
Log in

A semi-supervised support vector machine approach for parameter setting in motor imagery-based brain computer interfaces

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Parameter setting plays an important role for improving the performance of a brain computer interface (BCI). Currently, parameters (e.g. channels and frequency band) are often manually selected. It is time-consuming and not easy to obtain an optimal combination of parameters for a BCI. In this paper, motor imagery-based BCIs are considered, in which channels and frequency band are key parameters. First, a semi-supervised support vector machine algorithm is proposed for automatically selecting a set of channels with given frequency band. Next, this algorithm is extended for joint channel-frequency selection. In this approach, both training data with labels and test data without labels are used for training a classifier. Hence it can be used in small training data case. Finally, our algorithms are applied to a BCI competition data set. Our data analysis results show that these algorithms are effective for selection of frequency band and channels when the training data set is small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Ani A, Al-Sukker A (2006) Effect of feature and channel selection on EEG classification. In: Proceedings of international conference on IEEE EMBS, pp 2171–2174

  • Bishop C (1995) Neural networks for pattern recognition. Plus, Oxford University Press, USA

    Google Scholar 

  • Blanchard G, Blankertz B (2004) BCI competition 2003-data set IIa: spatial patterns of self-controlled brain rhythm modulations. IEEE Trans Biomed Eng 51(6):1062–1066

    Article  PubMed  Google Scholar 

  • Blankertz B, Tomioka R, Lemm S, Kawanabe M, Muller K (2008) Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process Magazine 25(1):41

    Article  Google Scholar 

  • Burges C (1998) A tutorial on support vector machines for pattern recognition. Data Mining Knowledge Discovery 2(2):121–167

    Article  Google Scholar 

  • Chang C, Lin C (2001) LIBSVM: a library for support vector machines [online]. Software available at http://www.csie.ntu.edu.tw/cjlin/libsvm

  • Dornhege G (2007) Toward brain-computer interfacing. MIT Press

  • Dornhege G, Blankertz B, Curio G, Muller K (2004) Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms. IEEE Trans Biomed Eng 51(6):993–1002

    Article  PubMed  Google Scholar 

  • Dornhege G, Blankertz B, Krauledat M, Losch F, Curio G, Muller K (2006) Combined optimization of spatial and temporal filters for improving brain-computer interfacing. IEEE Trans Biomed Eng 53(11):2274–2281

    Article  PubMed  Google Scholar 

  • Freeman W (2007) Definitions of state variables and state space for brain–computer interface. Cogn Neurodyn 1(1):3–14

    Article  PubMed  Google Scholar 

  • Garrett D, Peterson D, Anderson C, Thaut M (2003) Comparison of linear, nonlinear, and feature selection methods for EEG signal classification. IEEE Trans Neural Syst Rehabil Eng 11(2):141–144

    Article  PubMed  Google Scholar 

  • Kaper M, Meinicke P, Grossekathoefer U, Lingner T, Ritter H (2004) BCI competition 2003-data set IIb: support vector machines for the P300 speller paradigm. IEEE Trans Biomed Eng 51(6):1073–1076

    Article  PubMed  Google Scholar 

  • Lal T, Schroder M, Hinterberger T, Weston J, Bogdan M, Birbaumer N, Scholkopf B (2004) Support vector channel selection in BCI. IEEE Trans Biomed Eng 51(6):1003–1010

    Article  PubMed  Google Scholar 

  • Lemm S, Blankertz B, Curio G, Muller K (2005) Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans Biomed Eng 52(9):1541–1548

    Article  PubMed  Google Scholar 

  • Li Y, Guan C (2006) An extended EM algorithm for joint feature extraction and classification in brain-computer interfaces. Neural Comput 18(11):2730–2761

    Article  PubMed  Google Scholar 

  • Li Y, Guan C (2008) Joint feature re-extraction and classification using an iterative semi-supervised support vector machine algorithm. Mach Learn 71(1):33–53

    Article  Google Scholar 

  • Meinicke P, Kaper M, Hoppe F, Heumann M, Ritter H (2003) Improving transfer rates in brain computer interfacing: a case study. In: Proceedings of advanced neural information processing system, pp 1131–1138

  • Muller K, Krauledat M, Dornhege G, Curio G, Blankertz B (2004) Machine learning techniques for brain-computer interfaces. Biomed Tech 49(1):11–22

    Article  Google Scholar 

  • Pfurtscheller G, Brunner C, Schlögl A, Lopes da Silva F (2006) Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 31(1):153–159

    Article  CAS  PubMed  Google Scholar 

  • Pregenzer M, Pfurtscheller G (1999) Frequency component selection for an EEG-based brain to computerinterface. IEEE Trans Neural Syst Rehabil Eng 7(4):413–419

    CAS  Google Scholar 

  • Ramoser H, Muller-Gerking J, Pfurtscheller G (2000) Optimal spatial filtering of single trial EEG during imagined handmovement. IEEE Trans Rehabil Eng 8(4):441–446

    Article  CAS  PubMed  Google Scholar 

  • Schroder M, Bogdan M, Hinterberger T, Birbaumer N (2003) Automated EEG feature selection for brain computer interfaces. In: Proceedings of 1st International IEEE EMBS Conference on Neural Engineering, pp 626–629

  • Shenoy P, Krauledat M, Blankertz B, Rao R, Müller K (2006) Towards adaptive classification for BCI. J Neural Eng 3(R13–R23):1–1

    Google Scholar 

  • Thulasidas M, Guan C, Wu J (2006) Robust classification of EEG signal for brain-computer interface. IEEE Trans Neural Syst Rehabil Eng 14(1):24–29

    Article  PubMed  Google Scholar 

  • Vapnik V (1998) Statistical learning theory. New York, Wiley

  • Vidaurre C, Schlogl A, Cabeza R, Scherer R, Pfurtscheller G (2007) Study of on-line adaptive discriminant analysis for EEG-based brain computer interfaces. IEEE Trans Biomed Eng 54(3):550–556

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Gao S, Gao X (2005) Common spatial pattern method for channel selelction in motor imagery based brain-computer interface. In: Proceedings of international conference on IEEE EMBS, pp 5392–5395

  • Wang Y, Gao X, Zhang Z, Hong B, Gao S. BCI competition IIIdata set IVa: classifying single-trial EEG during motor imagery with a small training set. IEEE Trans Neural Syst Rehab Eng, to be published

  • Wolpaw J, McFarland D, Vaughan T (2000) Brain-computer interface research at the Wadsworth Center. IEEE Trans Rehabil Eng 8(2):222–226

    Article  CAS  PubMed  Google Scholar 

  • Wolpaw J, Birbaumer N, McFarland D, Pfurtscheller G, Vaughan T (2002) Brain–computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791

    Article  PubMed  Google Scholar 

  • Wu W, Gao X, Hong B, Gao S (2008) Classifying single-trial EEG during motor imagery by iterative spatio-spectral patterns learning (ISSPL). IEEE Trans Biomed Eng 55(6):1733–1743

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Berlin BCI group for providing the data set IVa in BCI competition III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanqing Li.

Additional information

This work was supported by National Natural Science Foundation of China under Grants 60825306 and 60802068; Natural Science Foundation of Guangdong Province, China under grant 9251064101000012 and supported by the Fundamental Research Funds for the Central Universities, SCUT under grant 2009ZZ0055.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, J., Li, Y. & Yu, Z. A semi-supervised support vector machine approach for parameter setting in motor imagery-based brain computer interfaces. Cogn Neurodyn 4, 207–216 (2010). https://doi.org/10.1007/s11571-010-9114-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-010-9114-0

Keywords

Navigation