Skip to main content
Log in

Functional model of biological neural networks

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

An Erratum to this article was published on 11 September 2010

Abstract

A functional model of biological neural networks, called temporal hierarchical probabilistic associative memory (THPAM), is proposed in this paper. THPAM comprises functional models of dendritic trees for encoding inputs to neurons, a first type of neuron for generating spike trains, a second type of neuron for generating graded signals to modulate neurons of the first type, supervised and unsupervised Hebbian learning mechanisms for easy learning and retrieving, an arrangement of dendritic trees for maximizing generalization, hardwiring for rotation-translation-scaling invariance, and feedback connections with different delay durations for neurons to make full use of present and past informations generated by neurons in the same and higher layers. These functional models and their processing operations have many functions of biological neural networks that have not been achieved by other models in the open literature and provide logically coherent answers to many long-standing neuroscientific questions. However, biological justifications of these functional models and their processing operations are required for THPAM to qualify as a macroscopic model (or low-order approximate) of biological neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ECM:

Expanded correlation matrix

FSI:

Feature subvector index

GECM:

General expanded correlation matrix

GOE:

General orthogonal expansion

NXOR:

Not-exclusive-or

OE:

Orthogonal expansion

PU:

Processing unit

PU(n):

Processing unit on feature subvector index n

RTS:

Rotation, translation and scaling

SPD:

Subjective probability distribution

THPAM:

Temporal hierarchical probabilistic associative memory

XOR:

Exclusive-or

References

  • Arbib MA (2003) The handbook of brain theory and neural networks, 2nd edn. The MIT Press, Cambridge

    Google Scholar 

  • Bengio Y, Lamblin P, Popovici D, Larochelle H (2007) Greedy layer-wise training of deep networks. In: Advances in neural information processing systems. The handbook of brain theory and neural networks, MIT Press, Cambridge

  • Bengio Y, LeCun Y (2007) Scaling learning algorithms towards AI. In: Bottou et al. (eds) Large-scale kernel machines. The MIT Press, Cambridge

  • Bishop CM (2006) Pattern recognition and machine learning. Springer Science, New York

    Google Scholar 

  • Dayan P, Abbott LF (2001) Theoretical neuroscience: computational and mathematical modeling of neural systems. The MIT Press, Cambridge

    Google Scholar 

  • Desjardins G, Bengio Y (2008) Empirical evaluation of convolutional rbms for vision. Technical Report 1327, Département d’Informatique et de Recherche Opérationnelle, Université de Montréal

  • Erhan D, Bengio Y, Courville A, Manzagol P, Vincent P, Bengio S (2010) Why does unsupervised pre-training help deep learning? J Mach Learn Res Appear

  • Fromherz P, Gaede V (1993) Exclusive-or function of single arborized neuron. Biol Cybern 69:337–334

    Article  CAS  PubMed  Google Scholar 

  • Geist J, Wilkinson R, Janet S, Grother P, Hammond B, Larsen N, Klear R, Matsko M, Burges C, Creecy R, Hull J, Vogl, Wilson C (1994) The second census optical charater recognition systems conference. Technical Report NIST 5452, National Institute of Standards and Technology, May 1994

  • George D, Hawkins J (2009) Towards a mathematical theory of cortical micro-circuits. PLoS Comput Biol 5–10:1–26

    Article  Google Scholar 

  • Granger R (2006) Engines of the brain: the computational instruction set of human cognition. AI Mag 27:15–31

    Google Scholar 

  • Grossberg S (2007) Towards a unified theory of neocortex: laminar cortical circuits for vision and cognition. Prog Brain Res 165:79–104

    Article  PubMed  Google Scholar 

  • Hassoun MH (1993) Associative neural memories, theory and implementation. Oxford University Press, New York

    Google Scholar 

  • Hawkins J (2004) On intelligence. Henry Holt and Company, New York

    Google Scholar 

  • Haykin S (2009) Neural networks and learning machine, 3rd edn. Pretice Hall, Upper Saddle River

    Google Scholar 

  • Hecht-Nielsen R (2007) Confabulation theory. Springer, New York

    Google Scholar 

  • Hecht-Nielsen R, McKenna T (2003) Computational models for neuroscience. Springer, New York

    Google Scholar 

  • Hinton GE, Anderson JA (1989) Parallel models of associative memory. Lawrence Erlbaum Associates, Hllsdale

    Google Scholar 

  • Hinton GE, Osindero S, Teh Y (2006) A fast learning algorithm for deep belief nets. Neural Comput 313:504–507

    CAS  Google Scholar 

  • Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 18:1527–1554

    Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science. McGraw-Hill, New York

    Google Scholar 

  • Koch C (1999) Biophysics of computation. Oxford University Press, Oxford

    Google Scholar 

  • Kohonen T (1988) Self-organization and associative memory. Springer, New York

    Google Scholar 

  • LeCun Y, Bose B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput 1–4:541–551

    Article  Google Scholar 

  • LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. In: Proceedings of The IEEE 86(11):2278–2324

  • Levitan IB, Kaczmarek LK (1993) Simulated annealing and boltzmann machines. Wiley, London

    Google Scholar 

  • Martin KAC (2002) Microcircuits in visual cortex. Curr Opinion Neurobiol 12–4:418–425

    Article  CAS  Google Scholar 

  • Mel BW (1994) Information processing in dendritic trees. Neural Comput 6:1031–1085

    Article  Google Scholar 

  • Mel BW (2002) Have we been hebbing down the wrong path? Neuron 34:275–288

    Article  Google Scholar 

  • Mountcastle VB (1978) An organizing principle for cerebral function: the unit model and the distributed system. In: Edelman GM, Mountcastle VB (eds) The mindful brain. MIT Press, Cambridge

    Google Scholar 

  • Oja E (1982) A simplified neuron nodel as a principal component analyzer. J Math Biol 15:267–273

    Article  CAS  PubMed  Google Scholar 

  • O’Reilly R, Munakata Y (2000) Computational explorations in cognitive neuroscience. The MIT Press, Cambridge

    Google Scholar 

  • Principe JC, Euliano NR, Lefebvre WC (2000) Neural and adaptive systems: fundamentals through simulations. Wiley, New York

    Google Scholar 

  • Ranzato M, Huang F, Boureau Y, LeCun Y (2007) Unsupervised learning of invariant feature hierarchies with applications to object recognition. In: Proceedings of computer vision and pattern recognition conference (CVPR 2007). IEEE Press, New York

  • Rieke F, Warland D, de Ruyter R, van Steveninck, Bialek W (1999) Spikes: exploring the neural code. The MIT Press, Cambridge

    Google Scholar 

  • Salakhutdinov R, Hinton G (2009) Deep Boltzmann machines. In: Proceedings of the 12th international conference on artificial intelligence and statistics (AISTATS) volume 5. Clearwater Beach, Florida, pp 448–455

  • Simard P, Steinkraus D, Platt JC (2003) Best practices for convolutional neural networks. In: Proceedings of the seventh international conference on document analysis and recognition 2:958–962

  • Slepian D (1956) A class of binary signaling alphabets. Bell Syst Tech J 35:203

    Google Scholar 

  • Stuart G, Nelson S, Hausser M (2008) Dendrites, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • von Neumann J (1958) The computer and the brain. Yale University Press, New Haven

    Google Scholar 

  • Wilkinson R, Geist J, Janet S, Grother P, Burges C, Creecy R, Hammond B, Hull J, Larsen N, Vogl, Wilson C (1992) The first census optical charater recognition systems conference. Technical Report NIST 4912, National Institute of Standards and Technology, August 1992

  • Zador AM, Clairborne BJ, Brown TH (1992) Nonlinear pattern separation in single hippocampal neurons with active dendritic membrane. In: Moody J, Lippmann R (eds) Advances in neural information processing systems, vol. 4. Morgan Kaufmann, San Mateo, pp 51–58

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Ting-Ho Lo.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11571-010-9127-8

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lo, J.TH. Functional model of biological neural networks. Cogn Neurodyn 4, 295–313 (2010). https://doi.org/10.1007/s11571-010-9110-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-010-9110-4

Keywords

Navigation