Skip to main content
Log in

Amanita sect. Phalloideae: two interesting non-lethal species from West Africa

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

The members of Amanita sect. Phalloideae (Fr.) Quél. are responsible for many fatalities worldwide. However, some species in this section have previously been reported as non-lethal and lacking deadly toxins. Sequences of five genes (ITS, nrLSU, RPB2, TEF1-α, TUB2) of species belonging to the section from tropical Africa, America, Asia, Australia, and Europe were included in this study to elucidate the phylogenetic relationships among the species. The results indicated that the lethal species are in one clade (subclade I) while the non-lethal species are divided into two clades (subclades II and III) within the section. Moreover, two non-lethal species from tropical Africa, namely A. ballerinoides and A. bulbulosa are newly described based on both morphology and molecular approaches. Phylogenetically, they cluster in the same subclade III with other known non-lethal amanitas, including A. ballerina, A. chuformis, A. franzii, A. levistriata, and A. pseudogemmata. Neither amatoxins nor phallotoxins were detected in A. ballerinoides and A. bulbulosa by LC-HRMS, which agrees with their placement in the non-lethal subclade III within A. sect. Phalloideae. Finally, a key to the West African species of Amanita sect. Phalloideae is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The sequences generated in this study are available in the NCBI GenBank (Table 1). The specimens studied in this study are deposited in the Mycological Herbarium of the University of Parakou (UNIPAR). Duplicate specimens are conserved at the Herbarium of Cryptogams, Kunming Institute of Botany, Chinese Academy of Sciences (KUN-HKAS).

References

  • Bâ AM, Duponnois R, Diabaté, M, Dreyfus B (2011) Les champignons ectomycorrhiziens des arbres forestiers en Afrique de l´Ouest. Méthodes d´étude, diversité, écologie, utilisation en foresterie et comestibilité, IRD

  • Bâ AM, Duponnois R, Moyersoen B, Diédhiou AG (2012) Ectomycorrhizal symbiosis of tropical African trees. Mycorrhiza 22:1–29. https://doi.org/10.1007/s00572-011-0415-x

    Article  PubMed  Google Scholar 

  • Bas C (1969) Morphology and subdivision of Amanita and a monograph on its section Lepidella. Persoonia 5:285–579

    Google Scholar 

  • Bas C (2000) A broader view on Amanita. Bollettino del Gruppo Micologico G Bresadola 43:9–12

    Google Scholar 

  • Beardslee HC (1919) A new species of Amanita. J Elisha Mitchell Sci Soc 34:198–199

    Google Scholar 

  • Beeli M (1927) Contribution à l’étude de la flore mycologique du Congo. II. Bull Soc R Bot Belg 59:101–112

    Google Scholar 

  • Beeli M (1935) Flore iconographique des champignons du Congo. Amanita. Fasc. I. Jardin botanique de l’État, Bruxelles 1–27

  • Boni S, Yorou NS (2015) Diversité et Variabilité inter-ethniques dans la consommation de champignons sauvages de la région de N’Dali au Bénin. Tropicultura 33:266–276

    Google Scholar 

  • Cai Q, Tulloss RE, Tang L et al (2014) Multi-locus phylogeny of lethal amanitas: implications for species diversity and historical biogeography. BMC Evol Biol 14:143. https://doi.org/10.1186/1471-2148-14-143

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai Q, Cui YY, Yang ZL (2016) Lethal Amanita species in China. Mycologia 108(5):993–1009. https://doi.org/10.3852/16-008

    Article  CAS  PubMed  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17(4):540–552. https://doi.org/10.1093/oxfordjournals.molbev.a026334

    Article  CAS  PubMed  Google Scholar 

  • Codjia JEI, Cai Q, Zhou SW et al (2020) Morphology, multilocus phylogeny, and toxin analysis reveal Amanita albolimbata, the first lethal Amanita species from Benin, West Africa. Front Microbiol 11:599047. https://doi.org/10.3389/fmicb.2020.599047

    Article  PubMed  PubMed Central  Google Scholar 

  • Corner EJH, Bas C (1962) The genus Amanita in Singapore and Malaya. Persoonia 2:241–304

    Google Scholar 

  • Corrales A, Henkel TW, Smith ME (2018) Ectomycorrhizal associations in the tropics – biogeography, diversity patterns and ecosystem roles. New Phytol 220:1076–1091. https://doi.org/10.1111/nph.15151

    Article  PubMed  Google Scholar 

  • Cui YY, Cai Q, Tang LP et al (2018) The family Amanitaceae: molecular phylogeny, higher-rank taxonomy and the species in China. Fungal Divers 91:5–230. https://doi.org/10.1007/s13225-018-0405-9

    Article  Google Scholar 

  • Cui YY, Cai Q, Yang ZL (2021) Amanita chuformis, a new Amanita species with a marginate basal bulb. Mycoscience 62:29–35

    Article  Google Scholar 

  • Davison EM, Giustiniano D, Busetti F et al (2017) Death cap mushrooms from southern Australia: additions to Amanita (Amanitaceae, Agaricales) section Phalloideae Clade IX. Aust Syst Bot 30:371–389. https://doi.org/10.1071/SB17032

    Article  Google Scholar 

  • Davison EM, Giustiniano D, Bougher NL et al (2021) Additions to Amanita (Amanitaceae, Agaricales) section Arenariae from south-western Australia. Aust Syst Bot 34:541–569. https://doi.org/10.1071/SB21017

    Article  Google Scholar 

  • De Kesel A, Degreef J, Kasongo B (2017) Champignons comestibles du Haut-Katanga (R.D. Congo), vol 17. ABC taxa, Bruxelles

    Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Eyi-Ndong H, Degreef J, De Kesel A (2011) Champignons comestibles des forêts denses d´Afrique Centrale: Taxonomie et identification, vol 10. ABC taxa, Bruxelles

    Google Scholar 

  • Fadeyi OG, Badou AS, Aignon LH et al (2017) Études ethnomycologiques et identification des champignons sauvages comestibles les plus consommés dans la région des Monts-Kouffè au Bénin (Afrique de l’ouest). Agron Afr 29(1):93–109

    Google Scholar 

  • Fadeyi OG, Assogba FM, Chabi DDCB et al (2019) Ethnomycology, myco-chemical analyzes and antioxidant activity of eleven species of the genus Amanita (Basidiomycota, Fungi) from Benin (West Africa). J Pharmacogn Phytochem 8(3):335–341

    CAS  Google Scholar 

  • Fraiture A, Amalfi M, Raspé O et al (2019) Two new species of Amanita sect. Phalloideae from Africa, one of which is devoid of amatoxins and phallotoxins. MycoKeys 53:93–125. https://doi.org/10.3897/mycokeys.53.34560

    Article  PubMed  PubMed Central  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2(2):113–118

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Dufayard J-F, Lefort V et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. https://doi.org/10.1093/sysbio/syq010

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser (Oxf) 41:95–98

    CAS  Google Scholar 

  • Härkönen M, Niemelä T, Kotiranta H, Pierce G (2015) Zambian mushrooms and mycology. Finnish Museum of Natural History, Helsinki. Norrlinia, 29

  • Henriot A, Cheype JL (2020) Piximètre: La mesure de dimensions sur images. Version 5.10

  • Hoang DT, Chernomor O, von Haeseler A et al (2018) UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 35:518–522. https://doi.org/10.1093/molbev/msx281

    Article  CAS  PubMed  Google Scholar 

  • Hongo T (1974) Two new species of Amanita from Castanopsis forests in Japan. In: Travaux mycologiques dédiés à R Kühner. Numéro spécial du Bull Soc Linn Lyon 43e année, pp 189–193

  • Jenkins DT (1979) A study of Amanita types. III. Taxa described by W. A. Murrill. Mycotaxon 10:175–200

    Google Scholar 

  • Jenkins DT (1986) Amanita of North America. Mad River Press, Eureka

    Google Scholar 

  • Jenkins DT (1988) A new species of Amanita from North America: Amanita levistriata. Mycotaxon 32(32):415–419

    Google Scholar 

  • Justo A, Morgenstern I, Hallen-Adams HE, Hibbett DS (2010) Convergent evolution of sequestrate forms in Amanita under Mediterranean climate conditions. Mycologia 102:675–688. https://doi.org/10.3852/09-191

    Article  PubMed  Google Scholar 

  • Kamou H, Gbogbo KA, Yorou NS et al (2017) Inventaire préliminaire des macromycètes du Parc National Fazao-Malfakassa du Togo, Afrique de l’Ouest. Tropicultura 35(4):275–287

    Google Scholar 

  • Katoh K, Standley D (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780. https://doi.org/10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kearse M, Moir R, Wilson A et al (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Kornerup A, Wanscher JH (1981) Taschenlexikon der Farben, 3rd edn. Muster-Schmidt Verlag, Zürich und Göttingen

    Google Scholar 

  • Lanfear R, Frandsen PB, Wright AM et al (2017) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol 34:772–773. https://doi.org/10.1093/molbev/msw260

    Article  CAS  PubMed  Google Scholar 

  • Li HJ, Xie JW, Zhang S et al (2015) Amanita subpallidorosea, a new lethal fungus from China. Mycol Prog 14:43. https://doi.org/10.1007/s11557-015-1055-x

    Article  Google Scholar 

  • Murrill WA (1941) More Florida novelties. Mycologia 33:434–448

    Article  Google Scholar 

  • Murrill WA (1945) New Florida fungi. Quart J Florida Acad Sci 8(2):175–198

    Google Scholar 

  • Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274. https://doi.org/10.1093/molbev/msu300

    Article  CAS  PubMed  Google Scholar 

  • Patrouillard N (1924) Basidiomycètes nouveaux de Madagascar. Bull Mus Natl Hist Nat 30:526–532

    Google Scholar 

  • Pegler DN, Shah-Smith D (1997) The genus Amanita (Amanitaceae, Agaricales) in Zambia. Mycotaxon 61:389–417

    Google Scholar 

  • Piepenbring M, Maciá-Vicente JG, Codjia JEI et al (2020) Mapping mycological ignorance – checklists and diversity patterns of fungi known for West Africa. IMA Fungus 11:13. https://doi.org/10.1186/s43008-020-00034-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Pringle A, Adams RI, Cross HB, Bruns TD (2009) The ectomycorrhizal fungus Amanita phalloides was introduced and is expanding its range on the west coast of North America. Mol Ecol 18:817–833. https://doi.org/10.1111/j.1365-294X.2008.04030.x

    Article  CAS  PubMed  Google Scholar 

  • Rambaut A (2018) FigTree v1.4.4: tree figure drawing tool. https://github.com/rambaut/figtree/releases. Accessed 20 Aug 2021

  • Rehner SA, Buckley E (2005) A Beauveria phylogeny inferred from nuclear ITS and EF1-a sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97(1):84–98. https://doi.org/10.3852/mycologia.97.1.84

    Article  CAS  PubMed  Google Scholar 

  • Reid DA (1980) A monograph of the Australian species of Amanita Pers. ex Hook. (Fungi). Aust J Bot Suppl Ser 10(8):1–96

    Article  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:12–20. https://doi.org/10.1093/sysbio/sys029

    Article  Google Scholar 

  • Soro B, Koné NA, Vanié-Léabo LPL et al (2019) Phytogeographical and sociolinguistical patterns of the diversity, distribution, and uses of wild mushrooms in Côte d’Ivoire, West Africa. J Ethnobiol Ethnomed 15:5. https://doi.org/10.1186/s13002-019-0284-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and Other Methods). Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts

  • Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577. https://doi.org/10.1080/10635150701472164

    Article  CAS  PubMed  Google Scholar 

  • Thongbai B, Tulloss RE, Miller SL et al (2016) A new species and four new records of Amanita (Amanitaceae; Basidiomycota) from Northern Thailand. Phytotaxa 286(4):211–231

    Article  Google Scholar 

  • Thongbai B, Miller SL, Stadler M et al (2017) Study of three interesting Amanita species from Thailand: morphology, multiple-gene phylogeny and toxin analysis. PLoS ONE 12(8):e018213. https://doi.org/10.1371/journal.pone.0182131

    Article  CAS  Google Scholar 

  • Tulloss RE (1984) Distribution and taxonomic notes on Amanita mutabilis. Mycologia 76(3):555–558

    Article  Google Scholar 

  • Tulloss RE (2005) Amanita-distribution in the Americas, with comparison to eastern and southern Asia and notes on spore character variation with latitude and ecology. Mycotaxon 93:189–232

    Google Scholar 

  • Tulloss RE, Bhandary HR (1992) Amanita chepangiana—a new species from Nepal. Mycotaxon 43:25–31

    Google Scholar 

  • Tulloss RE, Yang ZL (2011) Morphological study of Amanita (Fungi: Agaricales)—notes on methodology. In: Tulloss RE. Caycedo CR (eds)  Amanita workshop, 6th edn. Cook College, Rutgers University

  • Tulloss RE, Yang ZL (2021) Studies in the Amanitaceae <http://www.amanitaceae.org?home> Accessed 20 Aug 2021

  • Tulloss RE, Possiel L, Mazzella E (2020) Checklist of Amanita taxa found in sub-Saharan Africa. Updated 16.04.2020. http://www.amanitaceae.org/?sub-Saharan+Africa. [Accessed 20 Aug 2021]

  • Tulloss RE, Kudzma LV, Tulloss MK, Rockefeller A (2021) Amanita amerivirosa—a new toxic North American species of Amanita section Phalloideae. Amanitaceae 1(5):1–15

    Google Scholar 

  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172(8):4238–4246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walleyn R, Verbeken A (1998) Notes on the genus Amanita in Sub-Saharan Africa. Belg J Bot 131(2):156–161

    Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications. Academic Press, California, pp 315–322

    Google Scholar 

  • Wolfe BE, Tulloss RE, Pringle A (2012) The irreversible loss of a decomposition pathway marks the single origin of an ectomycorrhizal symbiosis. PLoS ONE 7:e39597. https://doi.org/10.1371/journal.pone.0039597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood A (1997) Studies in the genus Amanita (Agaricales) in Australia. Aust Syst Bot 10:723–854

    Article  Google Scholar 

  • Yang ZL (1997) Die Amanita-Arten von Südwestchina. Bibl Mycol 170:1–240

    Google Scholar 

  • Yang ZL (2005) Flora Fungorum Sinicorum. Vol. 27. Amanitaceae. Science Press, Beijing 258 p

    Google Scholar 

  • Yang ZL (2015) Atlas of the Chinese species of Amanitaceae. Science Press, Beijing

    Google Scholar 

  • Yang ZL, Doi Y (1999) A contribution to the knowledge of Amanita (Amanitaceae, Agaricales) in Japan. Bull Natn Sci Mus, Tokyo, Ser B 25(3):107–130

    Google Scholar 

  • Yang ZL, Li TH, Wu XL (2001) Revision of Amanita collections made from Hainan, southern China. Fungal Divers 6:149–165

    Google Scholar 

  • Yang ZL, Cai Q, Cui YY (2018) Phylogeny, diversity and morphological evolution of Amanitaceae. Biosyst Ecol Ser 34:359–380

    Google Scholar 

  • Yorou NS, Koné NGA, Guissou M et al (2014) Biodiversity and sustainable use of wild edible fungi in the Sudanian Centre of Endemism: a plea for valorisation. In: Bâ AM, McGuire KL, Diédhiou AG (eds) Ectomycorrhizal Symbioses in Tropical and Neotropical Forests. CRC Press, pp 241–269

    Google Scholar 

  • Zhang P, Chen ZH, Xiao B et al (2010) Lethal amanitas of East Asia characterized by morphological and molecular data. Fungal Divers 42(1):119–133. https://doi.org/10.1007/s13225-010-0018-4

    Article  Google Scholar 

  • Zhang D, Gao F, Jakovlić I et al (2020) PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour 20:348–355. https://doi.org/10.1111/1755-0998.13096

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Research Group for Fungal Diversity and Molecular Evolution of the CAS Key Laboratory for Plant Diversity and Biogeography of East Asia at Kunming Institute of Botany, CAS (China) for facilitating this research. We thank all members of this Research Group and especially Drs Qing Cai, Gang Wu, and Yang-Yang Cui for their kind assistance. We also thank Prof. Marie Laure Guissou from University Norbert ZONGO (Burkina-Faso), Mr. Gbamon P. Konomou from University Gamal Abdel Nader of Conakry (Guinea), Drs. N’golo A. Koné and Bakari Soro from University Nangui Abrogoua (Ivory Coast), Mrs. Aissata Traoré from University of Bamako (Mali), Prof. Atsu K. Guelly and Mr. Pondikpa Nadjombe from University of Lomé (Togo), for facilitating the collections in their respective countries. The assistance of Mr. Sheng Wen Zhou during toxin analysis is very appreciated.

Funding

This study was supported by the International Partnership Program of Chinese Academy of Sciences (No. 151853KYSB20170026), Yunnan Ten-Thousand-Talents Plan - Yunling Scholar Project and the National Geographic explorer grant (No. CP-126R-12). Sampling in Benin was possible thanks to the FORMAS grant (No. 226-20141109) and Rufford grant (No. 30156-1). Nourou S. Yorou is grateful to the Federal Ministry of Education and Research (BMBF, Germany) for the financial support to the project “Diversity and Uses of Tropical African Fungi: Edible mushrooms of Benin-FunTraf” (grant No. 01DG20015).

Author information

Authors and Affiliations

Authors

Contributions

ZLY, JEIC, and NSY developed the concept. JEIC, NSY, and MR collected the species. JEIC generated the DNA sequences. JEIC and PMW performed the molecular phylogenetic analyses. JEIC performed the taxonomic studies. JEIC wrote the first draft of the manuscript. PMW, MR, NSY, and ZLY critically revised and approved the final version of the manuscript.

Corresponding author

Correspondence to Zhu L. Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Section Editor: Marc Stadler

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

Fig. S1. Phylogenetic tree inferred by Maximum Likelihood analysis based on combined dataset (ITS, nrLSU, RPB2, TEF1-α and TUB2). SH-aLRT values over 80 %, and ML Ultrafast bootstrap values over 90% are reported on branches. Sequences generated in this study are highlighted in red. Fig. S2.Phylogenetic tree inferred by Bayesian Inference analysis based on combined dataset (ITS, nrLSU, RPB2, TEF1-α and TUB2). Bayesian posterior probabilities over 0.90 are reported on branches. Sequences generated in this study are highlighted in red. (PDF 655 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Codjia, J.E.I., Wang, P.M., Ryberg, M. et al. Amanita sect. Phalloideae: two interesting non-lethal species from West Africa. Mycol Progress 21, 39 (2022). https://doi.org/10.1007/s11557-022-01778-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11557-022-01778-0

Keywords

Navigation