Skip to main content
Log in

A novel medical image compression using Ripplet transform

  • Special Issue Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

In spite of great advancements in multimedia data storage and communication technologies, compression of medical data remains challenging. This paper presents a novel compression method for the compression of medical images. The proposed method uses Ripplet transform to represent singularities along arbitrarily shaped curves and Set Partitioning in Hierarchical Trees encoder to encode the significant coefficients. The main objective of the proposed method is to provide high quality compressed images by representing images at different scales and directions and to achieve high compression ratio. Experimental results obtained on a set of medical images demonstrate that besides providing multiresolution and high directionality, the proposed method attains high Peak Signal to Noise Ratio and significant compression ratio as compared with conventional and state-of-art compression methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kesavamurthy, T., Thiyagarajan, K.: Lossless volumetric colour medical image compression using block based encoding. Int. J. Med. Eng. Inf (Inderscience Publishers) 4(3), 244–252 (2012). doi:10.1504/IJMEI.2012.048386

    Google Scholar 

  2. Babel, M., Pasteau, F., Strauss, C., Pelcat, M., Bedat, L., Blestel, M., Deforges, O.: Preserving Data Integrity of Encoded Medical Images: the LAR Compression Framework, Advances in Reasoning-Based Image Processing Intelligent Systems, pp. 91–125. Springer, Berlin (2012). doi:10.1007/978-3-642-24693-7_4

    Google Scholar 

  3. Hwang, W., Chine, C.F., Li, K.J.: Scalable medical data compression and transmission using wavelet transform for telemedicine applications. IEEE Trans. Inf. Tech. Biomed. 7(1), 54–63 (2003). doi:10.1109/TITB.2003.808499

    Article  Google Scholar 

  4. Scholl, I., Aach, T., Deserno, T.M., Kuhlen, T.: Challenges of medical image processing. Comput. Sci. Res. Dev. 26, 5–13 (2011). doi:10.1007/s00450-010-01469

    Article  Google Scholar 

  5. Sanchez, V., Abugharbieh, R., Nasiopoulos, P.: Symmetry-based scalable lossless compression of 3D medical image data. IEEE Trans. Med. Imaging 28(7), 1062–1072 (2009). doi:10.1109/TMI.2009.2012899

    Article  Google Scholar 

  6. Xu, J., Yang, L., Wu, D.O.: Ripplet—a new transform for image processing. J. Vis. Commun. Image Represent. 21(7), 627–639 (2010). doi:10.1016/j.jvcir.2010.04.002

    Article  Google Scholar 

  7. Said, Pearlman: A new fast and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circuits Syst. Video Technol. 6, 243–250 (1996). doi:10.1109/76.499834

    Article  Google Scholar 

  8. Mallat, S.: A Wavelet Tour of Signal Processing, 2nd edn. Academic Press, New York (1999)

    MATH  Google Scholar 

  9. Candes, E.J.: Ridgelets: theory and applications. Ph.D. thesis, technical report. Department of Statistics, Stanford University, Stanford (1998)

  10. Candes, E.J., Donoho, D.L.: Ridgelets: a key to higher-dimensional intermittency. Philos. Trans. Math. Phys. Eng. Sci. 357(1760), 2495–2509 (1999). doi:10.1098/rsta.1999.0444

    Article  MathSciNet  MATH  Google Scholar 

  11. Do, M., Vetterli, M.: The finite ridgelet transform for image representation. IEEE Trans. Image Process. 12(1), 16–28 (2003). doi:10.1109/TIP.2002806252

    Article  MathSciNet  MATH  Google Scholar 

  12. Starck, J.L., Candes, E.J., Donoho, D.L.: Curvelets, multiresolution representation, and scaling laws. IEEE Trans. Image Process. 11, 670–684 (2000). doi:10.1117/12.408568

    Article  MathSciNet  Google Scholar 

  13. Iqbal, M., Javed, M.Y., Qayyum, U.: Curvelet-based image compression with SPIHT. In: International conference on convergence information technology, pp. 961–965 (2007). doi:10.1109/ICCIT.2007.280

  14. Lang, C., LI, H., LI, G., Zhao, X.: Combined sparse representation based on curvelet transform and local DCT for multi-layered image compression In: IEEE 3rd international conference on communication software and networks (ICCSN), pp. 316–320 (2011)

  15. Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14(12), 2091–2106 (2005). doi:10.1109/TIP.2005.859376

    Article  MathSciNet  Google Scholar 

  16. Eslami, R., Radha, H.: Wavelet-based contourlet coding using an SPIHT-like algorithm. In: Proceeding of the conference on information sciences and systems, Princeton, pp. 784–788 (2004)

  17. Belbachir, A.N., Goebel, P.M.: The Contourlet Transform for Image Compression. Physics in Signal and Image Process. Toulouse, France (2005)

    Google Scholar 

  18. Lu, Y., Do, M.N.: Multidimensional directional filter banks and surfacelets. IEEE Trans. Image Process. 16(4), 918–931 (2007). doi:10.1109/TIP.2007.891785

    Article  MathSciNet  Google Scholar 

  19. Penneca, E.L., Mallat, S.: Sparse geometric image representation with bandelets. IEEE Trans. Image Process. 14(4), 423–438 (2005). doi:10.1109/TIP.2005.843753

    Article  MathSciNet  Google Scholar 

  20. Lim, W.Q.: The discrete shearlet transform: a new directional transform and compactly supported shearlet frames. IEEE Trans. Image Process. 19(5), 1166–1180 (2010). doi:10.1109/TIP.2010.2041410

    Article  MathSciNet  Google Scholar 

  21. Willett, R., Nowak, K.: Platelets: a multiscale approach for recovering edges and surfaces in photon-limited medical imaging. IEEE Trans. Med. Imaging 22(3), 332–350 (2003). doi:10.1109/TMI.2003.809622

    Article  Google Scholar 

  22. Chen, Y.T., Tseng, D.C.: Wavelet-based medical image compression with adaptive prediction. Comput. Med. Imaging Graph. 31, 1–8 (2007)

    Article  MATH  Google Scholar 

  23. Knezovic, J., Kovac, M., Klapan, I., Mlinaric, H., Vranjes, Z.: Application of lossless compression of medical images using prediction and contextual error modeling. Coll. Antropol 31(4), 1143–1150 (2007)

    Google Scholar 

  24. Hosseini, S.M., Nilchi, A.R.: Medical ultrasound image compression using contextual vector quantization. Comput. Biol. Med. 42, 743–750 (2012)

    Article  Google Scholar 

  25. Jiang, H., Ma, Z., Hu, Y., Yang, B., Zhang, L.: Medical image compression based on vector quantization with variable block sizes in wavelet domain. Comput. Intell. Neurosci (Hindawi Publishing Corporation) 2012(5), 1–8 (2012)

    Article  Google Scholar 

  26. Wallace, G.K.: The JPEG still picture compression standard. Commun. ACM 34, 31–44 (1991)

    Article  Google Scholar 

  27. Ansari, M.A., Anand, R.S.: Implementation of efficient medical image compression algorithms with JPEG, wavelet transform and SPIHT. Int. J. Comput. Intell. Res. Appl. 2(1), 43–55 (2008)

    Google Scholar 

  28. Chen, Y.Y.: Medical image compression using DCT-based subband decomposition and modified SPIHT data organization. Int. J. Med. Inf. 76(10), 717–725 (2007)

    Article  Google Scholar 

  29. Singh, S., Kumar, V., Verma, H.K.: Adaptive threshold-based block classification in medical image compression for teleradiology. Comput. Biol. Med. 37(6), 811–819 (2007)

    Article  Google Scholar 

  30. Kim, C.Y.: Reevaluation of JPEG image compression to digitalized gastrointestinal endoscopic color images: a pilot study. Proc. SPIE Med. Imaging 3658, 420–426 (1999)

    Article  Google Scholar 

  31. Beladgham, M., Bessaid, A., Lakhdar, A.M., Ahmed, A.: Improving quality of medical image compression using biorthogonal CDF wavelet based on lifting scheme and SPIHT coding. Serbian J. Electr. Eng. 8(2), 163–179 (2011)

    Article  Google Scholar 

  32. Minasyan, S., Astola, J., Guevorkian, D.: An image compression scheme based on parametric Haar-like transform. IEEE Int. Symp. Circuits Syst. 3, 2088–2091 (2005)

    Article  Google Scholar 

  33. Shapiro, J.M.: Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. Signal Process. 41, 3445–3463 (1993). doi:10.1109/78.258085

    Article  MATH  Google Scholar 

  34. Said, A., Pearlman, W.: An image multiresolution representation for lossless and lossy compression. IEEE Trans. Image Process. 5, 1303–1310 (1996). doi:10.1109/83.535842

    Article  Google Scholar 

  35. Taubman, D.: High performance scalable image compression with EBCOT. IEEE Trans. Image Process. 9(7), 1158–1170 (2000). doi:10.1109/83.847830

    Article  Google Scholar 

  36. Lian, C.J., Chen, K.F., Chen, H.H., Chen, L.G.: Analysis and architecture design of block-coding engine for EBCOT in JPEG 2000. IEEE Trans. Circuits Syst. Video Technol. 13(3), 219–230 (2003). doi:10.1109/TCSVT.2003.809833

    Article  Google Scholar 

  37. Pearlman, W.A., Islam, A., Nagaraj, N., Said, A.: Efficient, low complexity image coding with a set-partitioning embedded block coder. IEEE Trans. Circuits Syst. Video Technol. 14(11), 1219–1235 (2004). doi:10.1109/TCSVT.2004.835150

    Article  Google Scholar 

  38. Simard, Y., Steinkrauss, D., Malvar, S.: On-line adaptation in image coding with a 2-D tarp filter. In: Proceeding of the IEEE data compression conference, pp. 23–32 (2002). doi:10.1109/DCC.2002.999940

  39. Pan, H., Siu, W.C., Law, N.F.: Lossless image compression using binary wavelet transform. IET Image Process. 1(4), 353–362 (2007)

    Article  Google Scholar 

  40. Sriraam, N., Shyamsundar, R.: 3D medical image compression using 3D wavelet coders. Digit. Signal Process. 21, 100–109 (2011). doi:10.1016/j.dsp.2010.06.002

    Article  Google Scholar 

  41. Xu, J., Wu, D.: Ripplet transform for feature extraction. In: Proceeding of the SPIE, pp. 6970 (2008). doi:10.1117/12.777302

  42. Donoho, L., Duncan, M.: Digital Curvelet Transform: Strategy, Implementation and Experiments, pp. 1–19. Stanford University, Stanford (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujitha Juliet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juliet, S., Rajsingh, E.B. & Ezra, K. A novel medical image compression using Ripplet transform. J Real-Time Image Proc 11, 401–412 (2016). https://doi.org/10.1007/s11554-013-0367-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-013-0367-9

Keywords

Navigation