Skip to main content
Log in

MITK-OpenIGTLink for combining open-source toolkits in real-time computer-assisted interventions

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Due to rapid developments in the research areas of medical imaging, medical image processing and robotics, computer-assisted interventions (CAI) are becoming an integral part of modern patient care. From a software engineering point of view, these systems are highly complex and research can benefit greatly from reusing software components. This is supported by a number of open-source toolkits for medical imaging and CAI such as the medical imaging interaction toolkit (MITK), the public software library for ultrasound imaging research (PLUS) and 3D Slicer. An independent inter-toolkit communication such as the open image-guided therapy link (OpenIGTLink) can be used to combine the advantages of these toolkits and enable an easier realization of a clinical CAI workflow.

Methods

MITK-OpenIGTLink is presented as a network interface within MITK that allows easy to use, asynchronous two-way messaging between MITK and clinical devices or other toolkits. Performance and interoperability tests with MITK-OpenIGTLink were carried out considering the whole CAI workflow from data acquisition over processing to visualization.

Results

We present how MITK-OpenIGTLink can be applied in different usage scenarios. In performance tests, tracking data were transmitted with a frame rate of up to 1000 Hz and a latency of 2.81 ms. Transmission of images with typical ultrasound (US) and greyscale high-definition (HD) resolutions of \(640\times 480\) and \(1920\times 1080\) is possible at up to 512 and 128 Hz, respectively.

Conclusion

With the integration of OpenIGTLink into MITK, this protocol is now supported by all established open-source toolkits in the field. This eases interoperability between MITK and toolkits such as PLUS or 3D Slicer and facilitates cross-toolkit research collaborations. MITK and its submodule MITK-OpenIGTLink are provided open source under a BSD-style licence (http://mitk.org).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. See http://openigtlink.org/.

  2. See http://cdash.mitk.org/.

  3. See http://bugs.mitk.org/.

  4. See http://openigtlink.org/library.html.

  5. See http://cppmicroservices.org/.

  6. See http://qt.io.

  7. CPU: Core i7-5960X 3.5 GHz 8 cores, RAM: 32 GB, Storage: SSD, GPU: Geforce GTX970 4 GB PCI-E x16, OS: Ubuntu 14.04.

  8. See http://ptpd.sourceforge.net/.

References

  1. Arata J, Kenmotsu H, Takagi M, Hori T, Miyagi T, Fujimoto H, Kajita Y, Hayashi Y, Chinzei K, Hashizume M (2013) Surgical bedside master console for neurosurgical robotic system. Int J Comput Assist Radiol Surg 8(1):75–86

    Article  PubMed  Google Scholar 

  2. Arata J, Kozuka H, Kim HW, Takesue N, Vladimirov B, Sakaguchi M, Tokuda J, Hata N, Chinzei K, Fujimoto H (2010) Open core control software for surgical robots. Int J Comput Assist Radiol Surg 5(3):211–220

    Article  PubMed  Google Scholar 

  3. Arata J, Tada Y, Kozuka H, Wada T, Saito Y, Ikedo N, Hayashi Y, Fujii M, Kajita Y, Mizuno M, Wakabayashi T, Yoshida J, Fujimoto H (2011) Neurosurgical robotic system for brain tumor removal. Int J Comput Assist Radiol Surg 6(3):375–385

    Article  PubMed  Google Scholar 

  4. Clarkson MJ, Zombori G, Thompson S, Totz J, Song Y, Espak M, Johnsen S, Hawkes D, Ourselin S (2014) The NifTK software platform for image-guided interventions: platform overview and NiftyLink messaging. Int J Comput Assist Radiol Surg 10(3):301–316

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cleary K, Peters TM (2010) Image-guided interventions: technology review and clinical applications. Annu Rev Biomed Eng 12(1):119–142

    Article  CAS  PubMed  Google Scholar 

  6. Correll K, Barendt N, Branicky M (2005) Design considerations for software only implementations of the IEEE 1588 precision time protocol. In: Conference on IEEE, vol 1588, pp 10–12

  7. Egger J, Tokuda J, Chauvin L, Freisleben B, Nimsky C, Kapur T, Wells W (2012) Integration of the OpenIGTLink network protocol for image-guided therapy with the medical platform MeVisLab. Int J Med Robot Comput Assist Surg 8(3):282–290

    Article  Google Scholar 

  8. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R (2012) 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30(9):1323–1341

    Article  PubMed  PubMed Central  Google Scholar 

  9. Franz AM, Seitel A, Servatius M, Zollner C, Gergel I, Wegner I, Neuhaus J, Zelzer S, Nolden M, Gaa J, Mercea P, Yung K, Sommer CM, Radeleff BA, Schlemmer HP, Kauczor HU, Meinzer HP, Maier-Hein L (2012) Simplified development of image-guided therapy software with MITK-IGT. In: Proceedings of SPIE, medical imaging 2012: image-guided procedures, robotic interventions, and modeling, vol 8316

  10. Ibanez L, Schroeder W, Ng L, Cates J (2005) The ITK software guide. The ITK software guide 804

  11. Ince DC, Hatton L, Graham-Cumming J (2012) The case for open computer programs. Nature 482:485–488

    Article  CAS  PubMed  Google Scholar 

  12. Kang HJ, Stolka PJ, Boctor E (2011) OpenIGTLinkMUSiiC : a standard communications protocol for advanced ultrasound research. MIDAS J 1–12

  13. Kilgus T, Heim E, Haase S, Prüfer S, Müller M, Seitel A, Fangerau M, Wiebe T, Iszatt J, Schlemmer HP, Hornegger J, Yen K, Maier-Hein L (2015) Mobile markerless augmented reality and its application in forensic medicine. Int J Comput Assist Radiol Surg 5(1):573–586

    Article  Google Scholar 

  14. Lasso A, Heffter T, Rankin A, Pinter C, Ungi T, Fichtinger G (2014) PLUS: open-source toolkit for ultrasound-guided intervention systems. IEEE Trans Biomed Eng 61:1–11

    Article  Google Scholar 

  15. Maier-Hein L, Tekbas A, Seitel A, Pianka F, Muller SA, Satzl S, Schawo S, Radeleff B, Tetzlaff R, Franz AM, Muller-Stich BP, Wolf I, Kauczor HU, Schmied BM, Meinzer HP (2008) In vivo accuracy assessment of a needle-based navigation system for CT-guided radiofrequency ablation of the liver. Med Phys 35(12):5385

    Article  PubMed  Google Scholar 

  16. März K, Franz AM, Seitel A, Winterstein A, Bendl R, Zelzer S, Nolden M, Meinzer HP, Maier-Hein L (2014) MITK-US: real-time ultrasound support within MITK. Int J Comput Assist Radiol Surg 9(3):411–420

    Article  PubMed  Google Scholar 

  17. März K, Franz AM, Seitel A, Winterstein A, Hafezi M, Saffari A, Bendl R, Stieltjes B, Meinzer HP, Mehrabi A, Maier-Hein L (2014) Interventional real-time ultrasound imaging with an integrated electromagnetic field generator. Int J Comput Assist Radiol Surg 9(5):759–768

    Article  PubMed  Google Scholar 

  18. McCormick M, Liu X, Jomier J, Marion C, Ibanez L (2014) ITK: enabling reproducible research and open science. Front Neuroinf 8(February):13

    Google Scholar 

  19. Müller M, Rassweiler MC, Klein J, Seitel A, Gondan M, Baumhauer M, Teber D, Rassweiler JJ, Meinzer HP, Maier-Hein L (2013) Mobile augmented reality for computer-assisted percutaneous nephrolithotomy. Int J Comput Assist Radiol Surg 8(4):663–675

  20. Neuhaus J, Wegner I, Käst J, Baumhauer M, Seitel A, Gergel I, Nolden M, Maleike D, Wolf I, Meinzer H (2009) MITK-IGT: eine navigationskomponente für das medical imaging interaction toolkit. Bildverarb die Med 2009:454–458

    Google Scholar 

  21. Nolden M, Zelzer S, Seitel A, Wald D, Müller M, Franz AM, Maleike D, Fangerau M, Baumhauer M, Maier-Hein L, Maier-Hein KH, Meinzer HP, Wolf I (2013) The medical imaging interaction toolkit: challenges and advances: 10 years of open-source development. Int J Comput Assist Radiol Surg 8(4):607–620

    Article  PubMed  Google Scholar 

  22. Ordas S, Yaniv Z, Cheng P, Tokuda J, Liu H, Hata N, Cleary K (2009) Interfacing proprietary hardware with the image-guided surgery toolkit (IGSTK): a case for the OpenIGTLink protocol. In: proceedings of SPIE, vol 7264, pp 72640F–72640F–7

  23. Pieper S, Halle M, Kikinis R (2004) 3D Slicer. In: 2004 2nd IEEE international symposium on biomedical imaging: nano to macro (IEEE Cat No. 04EX821)

  24. Seitel A, Bellemann N, Hafezi M, Franz AM, Servatius M, Saffari A, Kilgus T, Schlemmer HP, Mehrabi A, Radeleff BA, Maier-Hein L (2015) Towards markerless navigation for percutaneous needle insertions. Int J Comput Assist Radiol Surg 11:107–117

    Article  PubMed  Google Scholar 

  25. Seitel A, Yung K, Mersmann S, Kilgus T, Groch A, Dos Santos TR, Franz AM, Nolden M, Meinzer HP, Maier-Hein L (2012) MITK-ToF-range data within MITK. Int J Comput Assist Radiol Surg 7(1):87–96

    Article  PubMed  Google Scholar 

  26. Stolka PJ, Kang Hj, Boctor E (2010) The MUSiiC toolkit: modular real-time toolkit for advanced ultrasound research. MIDAS J Comput Assist Interv 1–11

  27. Su H, Shang W, Member S, Cole G, Li G, Member S, Harrington K, Camilo A, Tokuda J, Tempany CM, Hata N, Fischer GS (2014) Piezoelectrically actuated robotic system for MRI-guided prostate percutaneous therapy. IEEE/ASME Trans Mech 1:1–13

    Google Scholar 

  28. Teather RJ, Pavlovych A, Stuerzlinger W, MacKenzie IS (2009) Effects of tracking technology, latency, and spatial jitter on object movement. In: Proceedings of 3DUI— IEEE symposium on 3D user interfaces 2009, pp 43–50

  29. Tokuda J, Fischer GS, Papademetris X, Yaniv Z, Ibanez L, Cheng P, Liu H, Blevins J, Arata J, Golby AJ, Kapur T, Pieper S, Burdette EC, Fichtinger G, Tempany CM, Hata N, Alexandra J, Kapur T, Pieper S, Burdette EC, Fichtinger G, Clare M, Hata N (2009) OpenIGTLink: an open network protocol for image-guided therapy environment. Int J Med Robot Comput Assist Surg 5(4):423–434

    Article  Google Scholar 

  30. Wolf I, Vetter M, Wegner I, Nolden M, Bottger T, Hastenteufel M, Schobinger M, Kunert T, Meinzer HP (2004) The medical imaging interaction toolkit (MITK) a toolkit facilitating the creation of interactive software by extending VTK and ITK. Med Imaging 2004:16–27

    Google Scholar 

  31. Wu X, Taylor RH (2003) A framework for calibration of electromagnetic surgical navigation systems. In: Proceedings 2003 IEEE/RSJ international conference on intelligent robots and systems (IROS 2003), vol 1, pp 547–552

Download references

Acknowledgments

The authors would like to acknowledge support from the European Union through the ERC starting Grant COMBIOSCOPY under the New Horizon Framework Programme Grant Agreement ERC-2015-StG-37960.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Klemm.

Ethics declarations

Conflict of interest

The authors declare that there are no known conflicts of interest associated with this publication.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This articles does not contain patient data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klemm, M., Kirchner, T., Gröhl, J. et al. MITK-OpenIGTLink for combining open-source toolkits in real-time computer-assisted interventions. Int J CARS 12, 351–361 (2017). https://doi.org/10.1007/s11548-016-1488-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-016-1488-y

Keywords

Navigation