Skip to main content

Advertisement

Log in

Accurate image reconstruction using real C-arm data from a Circle-plus-arc trajectory

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Objective

Developing an efficient tool for accurate three-dimensional imaging from projections measured with C-arm systems.

Material and methods

A circle-plus-arc trajectory, which is complete and thus amenable to accurate reconstruction, is used. This trajectory is particularly attractive as its implementation does not require moving the patient. For reconstruction, we use the “M-line method”, which allows processing the data in the efficient filtered backprojection mode. This method also offers the advantage of not requiring an ideal data acquisition geometry, i.e., the M-line algorithm can account for known deviations in the scanning geometry, which is important given that sizeable deviations are generally encountered in C-arm imaging.

Results

A robust implementation scheme of the “M-line method” that applies straightforwardly to real C-arm data is presented. In particular, a numerically stable technique to compute the view-dependent derivative with respect to the source trajectory parameter is applied, and an efficient way to compute the π-line backprojection intervals via a polygonal weighting mask is presented. Projection data of an anthropomorphic thorax phantom were acquired on a medical C-arm scanner and used to demonstrate the benefit of using a complete data acquisition geometry with an accurate reconstruction algorithm versus using a state-of-the-art implementation of the conventional Feldkamp algorithm with a circular short scan of cone-beam data. A significant image quality improvement based on visual assessment is shown in terms of cone-beam artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pack J, Noo F (2005) Cone-beam reconstruction using 1d filtering along the projection of m-lines. Inverse Probl 21(3): 1105–1120

    Article  Google Scholar 

  2. Katsevich A (2005) Image reconstruction for the circle-and-arc trajectory. Phys Med Biol 50(10): 2249–2265

    Article  PubMed  Google Scholar 

  3. Dennerlein F, Katsevich A, Lauritsch G, Hornegger J (2005) Exact and efficient cone-beam reconstruction algorithm for a short-scan circle combined with various lines. Proc SPIE 5747: 388–399

    Article  Google Scholar 

  4. Grass M, Koppe R, Klotz E, Proksa R, Kuhn MH, Aerts H, Op De Beek J, Kemkers R (1999) Three-dimensional reconstruction of high contrast objects using c-arm image intensifier projection data. Comput Med Imaging Graph 23: 311–321

    Article  PubMed  CAS  Google Scholar 

  5. Riddell C, Trousset Y (2006) Rectification for cone-beam projection and backprojection. IEEE Trans Med Imaging 25(7): 950–962

    Article  PubMed  Google Scholar 

  6. Wiesent K, Barth K, Navab N, Durlak P, Brunner T, Schütz O, Seissler W (2000) Enhanced 3-d-reconstruction algorithm for c-arm systems suitable for interventional procedures. IEEE Trans Med Imaging 19(5): 391–403

    Article  PubMed  CAS  Google Scholar 

  7. Buzug TM (2008) Computed tomography—from photon statistics to modern cone-beam CT. Springer, Berlin

    Google Scholar 

  8. Zellerhoff M, Scholz B, Rührnschopf E-P, Brunner T (2005) Low contrast 3d-reconstruction from c-arm data. Proc SPIE 5745: 646–655

    Article  Google Scholar 

  9. Hoppe S, Noo F, Dennerlein F, Lauritsch G, Hornegger J (2007) Geometric calibration of the circle-plus-arc trajectory. Phys Med Biol 52(23): 6943–6960

    Article  PubMed  Google Scholar 

  10. Katsevich A (2004) Image reconstruction for the circle-and-line trajectory. Phys Med Biol 49(22): 5059–5072

    Article  PubMed  Google Scholar 

  11. Pack J, Noo F, Kudo H (2004) Investigation of saddle trajectories for cardiac ct imaging in cone-beam geometry. Phys Med Biol 49(11): 2317–2336

    Article  PubMed  Google Scholar 

  12. Tuy HK (1983) An inversion formula for cone-beam reconstruction. SIAM J Appl Math 43(3): 546–552

    Article  Google Scholar 

  13. Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A 1(6): 612–619

    Article  Google Scholar 

  14. Hoppe S, Dennerlein F, Lauritsch G, Hornegger J, Noo F (2006) Cone-beam tomography from short-scan circle-plus-arc data measured on a c-arm system. In: Nuclear Science Symposium and Medical Imaging Conference, vol 6. San Diego, CA, USA, Oct.29–Nov. 4, pp 2873–2877

  15. Hoppe S, Hornegger J, Lauritsch G, Dennerlein F, Noo F (2008) Truncation correction for oblique filtering lines. Med Phys 35: 5910–5920

    Article  PubMed  Google Scholar 

  16. Noo F, Pack J, Heuscher D (2003) Exact helical reconstruction using native cone-beam geometries. Phys Med Biol 48(23): 3787–3818

    Article  PubMed  Google Scholar 

  17. Noo F, Clackdoyle R, Mennessier C, White TA, Roney TJ (2000) Analytic method based on identification of ellipse parameters for scanner calibration in cone-beam tomography. Phys Med Biol 45(11): 3489–3508

    Article  PubMed  CAS  Google Scholar 

  18. Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  19. Noo F, Hoppe S, Dennerlein F, Lauritsch G, Hornegger J (2007) A new scheme for view-dependent data differentiation in fan-beam and cone-beam computed tomography. Phys Med Biol 52(17): 5393–5414

    Article  PubMed  Google Scholar 

  20. Parker DL (1982) Optimal short scan convolution reconstruction for fanbeam ct. Med Phys 9(2): 254–257

    Article  PubMed  CAS  Google Scholar 

  21. Silver MD (2000) A method for including redundant data in computed tomography. Med Phys 27(4): 773–774

    Article  PubMed  CAS  Google Scholar 

  22. Rodet T, Noo F, Defrise M (2004) The cone-beam algorithm of feldkamp, davis and kress preserves oblique line integrals. Med Phys 31(7): 1972–1975

    Article  PubMed  Google Scholar 

  23. Kak AC, Slaney M (1988) Principles of computerized tomographic imaging, 1st edn. The Institute of Electrical and Electronics Engineers Inc., New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Dennerlein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoppe, S., Hornegger, J., Dennerlein, F. et al. Accurate image reconstruction using real C-arm data from a Circle-plus-arc trajectory. Int J CARS 7, 73–86 (2012). https://doi.org/10.1007/s11548-011-0607-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-011-0607-z

Keywords

Navigation