Skip to main content

Advertisement

Log in

Three-dimensional appearance of the lips muscles with three-dimensional isotropic MRI: in vivo study

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Introduction

Our knowledge of facial muscles is based primarily on atlases and cadaveric studies. This study describes a non-invasive in vivo method (3D MRI) for segmenting and reconstructing facial muscles in a three-dimensional fashion.

Methods

Three-dimensional (3D), T1-weighted, 3 Tesla, isotropic MRI was applied to a subject. One observer performed semi-automatic segmentation using the Editor module from the 3D Slicer software (Harvard Medical School, Boston, MA, USA), version 3.2.

Results

We were able to successfully outline and three-dimensionally reconstruct the following facial muscles: pars labialis orbicularis oris, m. levatro labii superioris alaeque nasi, m. levator labii superioris, m. zygomaticus major and minor, m. depressor anguli oris, m. depressor labii inferioris, m. mentalis, m. buccinator, and m. orbicularis oculi.

Conclusions

3D reconstruction of the lip muscles should be taken into consideration in order to improve the accuracy and individualization of existing 3D facial soft tissue models. More studies are needed to further develop efficient methods for segmentation in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang Y, Prakash EC, Sunq E (2004) A new physical model with multilayer architecture for facial expression animation using dynamic adaptative mesh. IEEE Trans Vis Comput Graph 10: 339–352. doi:10.1109/TVCG.2004.1272733

    Article  PubMed  Google Scholar 

  2. De Greef S, Willems G (2005) Three-dimensional cranio-facial reconstruction in forensic identification: latest progress and new tendencies in the 21st century. J Forensic Sci 50: 12–17. doi:10.1520/JFS2004547

    Article  PubMed  Google Scholar 

  3. King SA, Parent RE (2005) Creating speech-synchronized animation. IEEE Trans Vis Comput Graph 11: 341–352. doi:10.1109/TVCG.2005.43

    Article  PubMed  Google Scholar 

  4. Chabanas M, Luboz V, Payan Y (2003) Patient specific finite element model of the face soft tissues for computer-assisted maxillofacial surgery. Med Image Anal 7: 131–151. doi:10.1016/S1361-8415(02)00108-1

    Article  PubMed  Google Scholar 

  5. Mollemans W, Schutyser F, Nadjmi N et al (2007) Predicting soft tissue deformations for a maxillofacial surgery planning system: from computational strategies to a complete clinical validation. Med Image Anal 11: 282–301

    Article  PubMed  CAS  Google Scholar 

  6. Xia J, Samman N, Yeung RW et al (2000) Computer-assisted three-dimensional surgical planning and simulation. 3D soft tissue planning and prediction. Int J Oral Maxillofac Surg 29: 250–254. doi:10.1016/S0901-5027(00)80023-5

    Article  PubMed  CAS  Google Scholar 

  7. Troulis Mj, Everett P, Seldin EB et al (2002) Development of a three-dimensional treatment planning system based on computed tomographic data. Int J Oral Maxillofac Surg 31: 349–357. doi:10.1054/ijom.2002.0278

    Article  PubMed  CAS  Google Scholar 

  8. Gering D, Nabavi A, Kikinis R et al (1999) An integrated visualization system for surgical planning and guidance using image fusion and interventional imaging. Int Conf Med Image Comput Comput Assist Interv 2: 809–819. doi:10.1007/10704282_88

    Article  Google Scholar 

  9. Gering D (1999) A system for surgical planning and guidance using image fusion and interventional MR. MIT Master’s thesis

  10. Nabavi A, Hata N, Gering D et al (1999) Image guided neurosurgery visualization of brain shift. In: Navigated Brain Surgery, pp 17–26

  11. Pessa JE, Zadoo VP, Garza PA et al (1998) Double or bifid zygomaticus major muscle: anatomy, incidence, and clinical correlation. Clin Anat 11: 310–313. doi:10.1002/(SICI)1098-2353(1998)11:5<310::AID-CA3>3.0.CO;2-T

    Article  PubMed  CAS  Google Scholar 

  12. Teran J, Sifakis E, Blemker SS et al (2005) Creating and simulating skeletal muscle from the visible human data set. IEEE Trans Vis Comput Graph 11: 317–328. doi:10.1109/TVCG.2005.42

    Article  PubMed  Google Scholar 

  13. Pessa JE, Zadoo VP, Adrian EK Jr et al (1998) Variability of the midfacial muscles: analysis of 50 hemifacial cadaver dissections. Plast Reconstr Surg 102: 1888–1893. doi:10.1097/00006534-199811000-00013

    Article  PubMed  CAS  Google Scholar 

  14. Chuang DC, Wei FC, Noordhoff MS (1989) “Smile” reconstruction in facial paralysis. Ann Plast Surg 23: 56–65. doi:10.1097/00000637-198907000-00010

    Article  PubMed  CAS  Google Scholar 

  15. Waller BM, Cray JJ, Burrows AM (2008) Selection for universal facial emotion. Emotion 8: 435–439. doi:10.1037/1528-3542.8.3.435

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Olszewski.

Electronic supplementary material

The Below is the Electronic Supplementary Material

PDF (104kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olszewski, R., Liu, Y., Duprez, T. et al. Three-dimensional appearance of the lips muscles with three-dimensional isotropic MRI: in vivo study. Int J CARS 4, 349–352 (2009). https://doi.org/10.1007/s11548-009-0352-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-009-0352-8

Keywords

Navigation