Skip to main content
Log in

Predicting respiratory motion signals for image-guided radiotherapy using multi-step linear methods (MULIN)

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Objective

Forecasting of respiration motion in image-guided radiotherapy requires algorithms that can accurately and efficiently predict target location. Improved methods for respiratory motion forecasting were developed and tested.

Materials and methods

MULIN, a new family of prediction algorithms based on linear expansions of the prediction error, was developed and tested. Computer-generated data with a prediction horizon of 150 ms was used for testing in simulation experiments. MULIN was compared to Least Mean Squares-based predictors (LMS; normalized LMS, nLMS; wavelet-based multiscale autoregression, wLMS) and a multi-frequency Extended Kalman Filter (EKF) approach. The in vivo performance of the algorithms was tested on data sets of patients who underwent radiotherapy.

Results

The new MULIN methods are highly competitive, outperforming the LMS and the EKF prediction algorithms in real-world settings and performing similarly to optimized nLMS and wLMS prediction algorithms. On simulated, periodic data the MULIN algorithms are outperformed only by the EKF approach due to its inherent advantage in predicting periodic signals. In the presence of noise, the MULIN methods significantly outperform all other algorithms.

Conclusion

The MULIN family of algorithms is a feasible tool for the prediction of respiratory motion, performing as well as or better than conventional algorithms while requiring significantly lower computational complexity. The MULIN algorithms are of special importance wherever high-speed prediction is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ernst F, Schlaefer A, Schweikard A (2007) Prediction of respiratory motion with wavelet-based multiscale autoregression, MICCAI 2007, Part II. In: Ayache N, Ourselin S, Maeder A(eds) Lecture Notes in Computer Science, vol. 4792 MICCAI. Springer, Berlin, pp 668–675

    Google Scholar 

  2. Haykin S (2002) Adaptive filter theory. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  3. Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME J Basic Eng 82(Series D): 35–45

    Google Scholar 

  4. Kalman RE, Bucy RS (1961) New results in linear filtering and prediction theory. Trans ASME J Basic Eng 83(Series D): 95–108

    Google Scholar 

  5. Ramrath L, Schlaefer A, Ernst F, Dieterich S, Schweikard A (2007) Prediction of respiratory motion with a multi-frequency based Extended Kalman Filter. In: Proceedings of the 21st international conference and exhibition on computer assisted radiology and surgery (CARS’07) (Berlin, Germany), vol 21, CARS

  6. Schweikard A, Glosser G, Bodduluri M, Murphy MJ, Adler JR (2000) Robotic motion compensation for respiratory motion during radiosurgery. J Comput Aided Surg 5(4): 263–277

    Article  CAS  Google Scholar 

  7. Schweikard A, Murphy MJ, Hancock SL (1998) Image-guided stereotactic radiosurgery: the CyberKnife. Image Guid Neurosurg Clin Appl Interact Surg Navig 16: 193–204

    Google Scholar 

  8. Douglas SC (1994) A family of normalized LMS algorithms. IEEE Signal Process Lett 1(3): 49–55

    Article  Google Scholar 

  9. Sharp GC, Jiang SB, Shimizu S, Shirato H (2004) Prediction of respiratory tumour motion for real-time image-guided radiotherapy. Phys Med Biol 49: 425–440

    Article  PubMed  Google Scholar 

  10. Urschel HC, Kresl JJ, Luketich JD, Timmermann RD (2007) Robotic radiosurgery. Treating tumors that move with respiration, 1st edn. Springer, Berlin

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Floris Ernst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ernst, F., Schweikard, A. Predicting respiratory motion signals for image-guided radiotherapy using multi-step linear methods (MULIN). Int J CARS 3, 85–90 (2008). https://doi.org/10.1007/s11548-008-0211-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-008-0211-z

Keywords

Navigation