Skip to main content
Log in

To characterize small renal cell carcinoma using diffusion relaxation correlation spectroscopic imaging and apparent diffusion coefficient based histogram analysis: a preliminary study

  • Abdominal Radiology
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

To study the capability of diffusion-relaxation correlation spectroscopic imaging (DR-CSI) on subtype classification and grade differentiation for small renal cell carcinoma (RCC). Histogram analysis for apparent diffusion coefficient (ADC) was studied for comparison.

Materials and methods

A total of 61 patients with small RCC (< 4 cm) were included in the retrospective study. MRI data were reviewed, including a multi-b (0–1500 s/mm2) multi-TE (51–200 ms) diffusion weighted imaging (DWI) sequence. Region of interest (ROI) was delineated manually on DWI to include solid tumor. For each patient, a D-T2 spectrum was fitted and segmented into 5 compartments, and the volume fractions VA, VB, VC, VD, VE were obtained. ADC mapping was calculated, and histogram parameters ADC 90th, 10th, median, standard deviation, skewness and kurtosis were obtained. All MRI metrices were compared between clear cell RCC (ccRCC) and non-ccRCC group, and between high-grade and low-grade group. Receiver operator curve analysis was used to assess the corresponding diagnostic performance.

Results

Significantly higher ADC 90th, ADC 10th and ADC median, and significantly lower DR-CSI VB was found for ccRCC compared to non-ccRCC. Significantly lower ADC 90th, ADC median and significantly higher VB was found for high-grade RCC compared to low-grade. For identifying ccRCC from non-ccRCC, VB showed the highest area under curve (AUC, 0.861) and specificity (0.882). For differentiating high- from low-grade, ADC 90th showed the highest AUC (0.726) and specificity (0.786), while VB also displayed a moderate AUC (0.715).

Conclusion

DR-CSI may offer improved accuracy in subtype identification for small RCC, while do not show better performance for small RCC grading compared to ADC histogram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sun M, Thuret R, Abdollah F, Lughezzani G, Schmitges J, Tian Z, Shariat SF, Montorsi F, Patard JJ, Perrotte P, Karakiewicz PI (2011) Age-adjusted incidence, mortality, and survival rates of stage-specific renal cell carcinoma in North America: a trend analysis. Eur Urol 59(1):135–141. https://doi.org/10.1016/j.eururo.2010.10.029

    Article  PubMed  Google Scholar 

  2. Jayson M, Sanders H (1998) Increased incidence of serendipitously discovered renal cell carcinoma. Urology 51(2):203–205. https://doi.org/10.1016/s0090-4295(97)00506-2

    Article  CAS  PubMed  Google Scholar 

  3. Reuter VE (2006) The pathology of renal epithelial neoplasms. Semin Oncol 33(5):534–543. https://doi.org/10.1053/j.seminoncol.2006.06.009

    Article  PubMed  Google Scholar 

  4. Cheville JC, Lohse CM, Zincke H, Weaver AL, Blute ML (2003) Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma. Am J Surg Pathol 27(5):612–624. https://doi.org/10.1097/00000478-200305000-00005

    Article  PubMed  Google Scholar 

  5. O’Connor JPB, Rose CJ, Waterton JC, Carano RAD, Parker GJM, Jackson A (2015) Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res 21(2):249–257. https://doi.org/10.1158/1078-0432.Ccr-14-0990

    Article  CAS  PubMed  Google Scholar 

  6. Sasiwimonphan K, Takahashi N, Leibovich BC, Carter RE, Atwell TD, Kawashima A (2012) Small (< 4 cm) renal mass: differentiation of angiomyolipoma without visible fat from renal cell carcinoma utilizing MR imaging. Radiology 263(1):160–168. https://doi.org/10.1148/radiol.12111205

    Article  PubMed  Google Scholar 

  7. Heilbrun ME, Remer EM, Casalino DD, Beland MD, Bishoff JT, Blaufox MD, Coursey CA, Goldfarb S, Harvin HJ, Nikolaidis P, Preminger GM, Raman SS, Sahni A, Vikram R, Weinfeld RM (2015) ACR appropriateness criteria indeterminate renal mass. J Am Coll Radiol 12(4):333–341. https://doi.org/10.1016/j.jacr.2014.12.012

    Article  PubMed  Google Scholar 

  8. Schieda N, Lim RS, McInnes MDF, Thomassin I, Renard-Penna R, Tavolaro S, Cornelis FH (2018) Characterization of small (< 4 cm) solid renal masses by computed tomography and magnetic resonance imaging: current evidence and further development. Diagn Interv Imaging 99(7–8):443–455. https://doi.org/10.1016/j.diii.2018.03.004

    Article  CAS  PubMed  Google Scholar 

  9. Flum AS, Hamoui N, Said MA, Yang XJ, Casalino DD, McGuire BB, Perry KT, Nadler RB (2016) Update on the diagnosis and management of renal angiomyolipoma. J Urol 195(4):834–846. https://doi.org/10.1016/j.juro.2015.07.126

    Article  PubMed  Google Scholar 

  10. Silverman SG, Gan YU, Mortele KJ, Tuncali K, Cibas ES (2006) Renal masses in the adult patient: the role of percutaneous biopsy. Radiology 240(1):6–22. https://doi.org/10.1148/radiol.2401050061

    Article  PubMed  Google Scholar 

  11. Cornelis F, Tricaud E, Lasserre AS, Petitpierre F, Bernhard JC, Le Bras Y, Yacoub M, Bouzgarrou M, Ravaud A, Grenier N (2015) Multiparametric magnetic resonance imaging for the differentiation of low and high grade clear cell renal carcinoma. Eur Radiol 25(1):24–31. https://doi.org/10.1007/s00330-014-3380-x

    Article  CAS  PubMed  Google Scholar 

  12. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, Varela I, Phillimore B, Begum S, McDonald NQ, Butler A, Jones D, Raine K, Latimer C, Santos CR, Nohadani M, Eklund AC, Spencer-Dene B, Clark G, Pickering L, Stamp G, Gore M, Szallasi Z, Downward J, Futreal PA, Swanton C (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366(10):883–892. https://doi.org/10.1056/NEJMoa1113205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McCroskey Z, Sim SJ, Selzman AA, Ayala AG, Ro JY (2017) Primary collision tumors of the kidney composed of oncocytoma and papillary renal cell carcinoma: a review. Ann Diagn Pathol 29:32–36. https://doi.org/10.1016/j.anndiagpath.2017.04.011

    Article  PubMed  Google Scholar 

  14. Cornelis F, Tricaud E, Lasserre AS, Petitpierre F, Bernhard JC, Le Bras Y, Yacoub M, Bouzgarrou M, Ravaud A, Grenier N (2014) Routinely performed multiparametric magnetic resonance imaging helps to differentiate common subtypes of renal tumours. Eur Radiol 24(5):1068–1080. https://doi.org/10.1007/s00330-014-3107-z

    Article  CAS  PubMed  Google Scholar 

  15. Dai YM, Yao QY, Wu GY, Wu DM, Wu LM, Zhu L, Xue R, Xu JR (2016) Characterization of clear cell renal cell carcinoma with diffusion kurtosis imaging: correlation between diffusion kurtosis parameters and tumor cellularity. NMR Biomed 29(7):873–881. https://doi.org/10.1002/nbm.3535

    Article  CAS  PubMed  Google Scholar 

  16. Young JR, Coy H, Kim HJ, Douek M, Lo P, Pantuck AJ, Raman SS (2017) Performance of relative enhancement on multiphasic MRI for the differentiation of clear cell renal cell carcinoma (RCC) from papillary and chromophobe RCC subtypes and oncocytoma. Am J Roentgenol 208(4):812–819. https://doi.org/10.2214/ajr.16.17152

    Article  Google Scholar 

  17. Tomaszewski MR, Dominguez-Viqueira W, Ortiz A, Shi Y, Costello JR, Enderling H, Rosenberg SA, Gillies RJ (2021) Heterogeneity analysis of MRI T2 maps for measurement of early tumor response to radiotherapy. NMR Biomed. https://doi.org/10.1002/nbm.4454

    Article  PubMed  Google Scholar 

  18. Kudou M, Nakanishi M, Kuriu Y, Murayama Y, Arita T, Kishimoto M, Konishi E, Goto M, Yamada K, Otsuji E (2020) Value of intra-tumor heterogeneity evaluated by diffusion-weighted MRI for predicting pathological stages and therapeutic responses to chemoradiotherapy in lower rectal cancer. J Cancer 11(1):168–176. https://doi.org/10.7150/jca.38354

    Article  PubMed  PubMed Central  Google Scholar 

  19. Langbein BJ, Szczepankiewicz F, Westin CF, Bay C, Maier SE, Kibel AS, Tempany CM, Fennessy FM (2021) A pilot study of multidimensional diffusion MRI for assessment of tissue heterogeneity in prostate cancer. Invest Radiol. https://doi.org/10.1097/RLI.0000000000000796

    Article  PubMed  PubMed Central  Google Scholar 

  20. Karaman MM, Sui Y, Wang H, Magin RL, Li YH, Zhou XJ (2016) Differentiating low- and high-grade pediatric brain tumors using a continuous-time random-walk diffusion model at high b-values. Magn Reson Med 76(4):1149–1157. https://doi.org/10.1002/mrm.26012

    Article  PubMed  Google Scholar 

  21. Kim D, Doyle EK, Wisnowski JL, Kim JH, Haldar JP (2017) Diffusion–relaxation correlation spectroscopic imaging: a multidimensional approach for probing microstructure. Magn Reson Med 78(6):2236–2249. https://doi.org/10.1002/mrm.26629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang Z, Wu HH, Priester A, Magyar C, Afshari Mirak S, Shakeri S, Mohammadian Bajgiran A, Hosseiny M, Azadikhah A, Sung K, Reiter RE, Sisk AE, Raman S, Enzmann DR (2020) Prostate microstructure in prostate cancer using 3-T MRI with diffusion–relaxation correlation spectrum imaging: validation with whole-mount digital histopathology. Radiology 296(2):348–355. https://doi.org/10.1148/radiol.2020192330

    Article  PubMed  Google Scholar 

  23. Benjamini D, Basser PJ (2020) Multidimensional correlation MRI. NMR Biomed 33(12):e4226. https://doi.org/10.1002/nbm.4226

    Article  PubMed  Google Scholar 

  24. Benjamini D, Priemer DS, Perl DP, Brody DL, Basser PJ (2022) Mapping astrogliosis in the individual human brain using multidimensional MRI. Brain. https://doi.org/10.1093/brain/awac298

    Article  PubMed Central  Google Scholar 

  25. Liu F, Hu W, Sun Y, Shen Y, Zhou W, Dai Y, Gu L, Zhang M, Zhou Y (2022) Exploration of interstitial fibrosis in chronic kidney disease by diffusion–relaxation correlation spectrum MR imaging: a preliminary study. J Magn Reson Imaging. https://doi.org/10.1002/jmri.28535

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dai Y, Hu W, Wu G, Wu D, Zhu M, Luo Y, Wang J, Zhou Y, Hu P (2023) Grading clear cell renal cell carcinoma grade using diffusion relaxation correlated MR spectroscopic imaging. J Magn Reson Imaging JMRI. https://doi.org/10.1002/jmri.28777

    Article  PubMed  Google Scholar 

  27. Delahunt B, Cheville JC, Martignoni G, Humphrey PA, Magi-Galluzzi C, McKenney J, Egevad L, Algaba F, Moch H, Grignon DJ, Montironi R, Srigley JR, Panel IRT (2013) The International Society of Urological Pathology (ISUP) grading system for renal cell carcinoma and other prognostic parameters. Am J Surg Pathol 37(10):1490–1504. https://doi.org/10.1097/pas.0b013e318299f0fb

    Article  PubMed  Google Scholar 

  28. Veraart J, Fieremans E, Novikov DS (2016) Diffusion MRI noise mapping using random matrix theory. Magn Reson Med 76(5):1582–1593. https://doi.org/10.1002/mrm.26059

    Article  CAS  PubMed  Google Scholar 

  29. Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW (2010) Elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 29(1):196–205. https://doi.org/10.1109/tmi.2009.2035616

    Article  PubMed  Google Scholar 

  30. Mytsyk Y, Dutka I, Yuriy B, Maksymovych I, Caprnda M, Gazdikova K, Rodrigo L, Kruzliak P, Illjuk P, Farooqi AA (2018) Differential diagnosis of the small renal masses: role of the apparent diffusion coefficient of the diffusion-weighted MRI. Int Urol Nephrol 50(2):197–204. https://doi.org/10.1007/s11255-017-1761-1

    Article  PubMed  Google Scholar 

  31. Li AQ, Xing W, Li HJ, Hu Y, Hu DY, Li Z, Kamel IR (2018) Subtype differentiation of small (<= 4 cm) solid renal mass using volumetric histogram analysis of DWI at 3-T MRI. Am J Roentgenol 211(3):614–623. https://doi.org/10.2214/ajr.17.19278

    Article  Google Scholar 

  32. Agnello F, Roy C, Bazille G, Galia M, Midiri M, Charles T, Lang H (2013) Small solid renal masses: characterization by diffusion-weighted MRI at 3 T. Clin Radiol 68(6):E301–E308. https://doi.org/10.1016/j.crad.2013.01.002

    Article  CAS  PubMed  Google Scholar 

  33. Song JS, Hwang SB, Chung GH, Jin GY (2016) Intra-individual, inter-vendor comparison of diffusion-weighted MR imaging of upper abdominal organs at 3.0 Tesla with an emphasis on the value of normalization with the spleen. Korean J Radiol 17(2):209–217. https://doi.org/10.3348/kjr.2016.17.2.209

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rosenkrantz AB, Niver BE, Fitzgerald EF, Babb JS, Chandarana H, Melamed J (2010) Utility of the apparent diffusion coefficient for distinguishing clear cell renal cell carcinoma of low and high nuclear grade. Am J Roentgenol 195(5):W344–W351. https://doi.org/10.2214/ajr.10.4688

    Article  Google Scholar 

  35. Akinci O, Turkoglu F, Nalbant MO, Oner O, Inci E (2023) The effectiveness of volumetric MRI histogram analysis in renal cell carcinoma. Acad Radiol. https://doi.org/10.1016/j.acra.2023.03.029

    Article  PubMed  Google Scholar 

  36. Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, Heng DY, Larkin J, Ficarra V (2017) Renal cell carcinoma. Nat Rev Disease Primers. https://doi.org/10.1038/nrdp.2017.9

    Article  PubMed  Google Scholar 

  37. Ji Y, Gagoski B, Hoge WS, Rathi Y, Ning LP (2021) Accelerated diffusion and relaxation–diffusion MRI using time-division multiplexing EPI. Magn Reson Med 86(5):2528–2541. https://doi.org/10.1002/mrm.28894

    Article  CAS  PubMed  Google Scholar 

  38. Benjamini D, Basser PJ (2018) Towards clinically feasible relaxation–diffusion correlation MRI using MADCO. Microporous Mesoporous Mater 269:93–96. https://doi.org/10.1016/j.micromeso.2017.02.001

    Article  CAS  PubMed  Google Scholar 

  39. Zaldumbide L, Erramuzpe A, Guarch R, Cortes JM, Lopez JI (2015) Large (> 3.8 cm) clear cell renal cell carcinomas are morphologically and immunohistochemically heterogeneous. Virchows Arch 466(1):61–66. https://doi.org/10.1007/s00428-014-1673-8

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design were performed by [YD]. Material preparation and data collection were performed by [MZ], [SH], [YL], [XW], and [GW]. Data analysis were performed by [WH] and [DW]. The first draft of the manuscript was written and reviewed by [YD], [YZ] and [PH], and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Guangyu Wu or Peng Hu.

Ethics declarations

Conflict interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This retrospective study was approved by the Institutional Review Board of Renji hospital, School of Medicine, Shanghai Jiaotong University, and the consents from patients were waived.

Consent to participate

Informed consent was waived for all individual participants included in the study for its retrospective nature.

Consent to publish

The authors affirm that human research participants provided informed consent for publication of the images in Fig. 13.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Zhu, M., Hu, W. et al. To characterize small renal cell carcinoma using diffusion relaxation correlation spectroscopic imaging and apparent diffusion coefficient based histogram analysis: a preliminary study. Radiol med (2024). https://doi.org/10.1007/s11547-024-01819-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11547-024-01819-6

Keywords

Navigation