Skip to main content
Log in

A rat model of acute kidney injury through systemic hypoperfusion evaluated by micro-US, color and PW-Doppler

  • ABDOMINAL RADIOLOGY
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Aim

To create an animal model of acute renal ischemia induced by systemic hypoperfusion, controllable and reproducible to study, in real time, hemorrhagic shock changes with micro-imaging.

Animals and methods

Hemorrhagic shock was induced in rats activating a syringe pump setup to remove 1 mL/min of blood, through the femoral artery catheter. The withdrawal was continued until the mean arterial pressure (MAP) dropped to 25–30 mmHg. For the next 60 min, the MAP was maintained at a constant pressure value, by automatic pump infusion and withdrawal. Micro-ultrasound imaging was performed using the Vevo 2100 system with the MS250 transducer (13–24 MHz). Renal size, morphology and echogenicity were evaluated in B-mode. Renal blood flow was evaluated using color and PW-Doppler.

Results

After 1 h of ischemia, B-mode images documented slight changes in kidney echogenicity. Color and PW-Doppler analysis showed a reduction in renal blood flow in kidneys during the hypoperfusion with a progressive and significant change from baseline values of resistive index (RI). At the histological evaluation, 60 min of hypoperfusion resulted in ischemic changes in the kidneys.

Conclusions

The results of this experimental study encourage the use of the described model to study acute renal ischemia trough severe hypoperfusion. The histological data confirmed that the model was able to produce injury in renal parenchyma. It can be used to assess acute ischemic damage not only in the kidney but also in other organs by using all available dedicated small animals imaging techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Legrand M, Mik EG, Johannes T, Payen D, Ince C (2008) Renal hypoxia and dysoxia after reperfusion of the ischemic kidney. Mol Med 14:502–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhao ZG, Zhu HX, Zhang LM, Zhang YP, Niu CY (2014) Mesenteric lymph drainage alleviates acute kidney injury induced by hemorrhagic shock without resuscitation. Sci World J 5:78. https://doi.org/10.1155/2014/720836

    Article  Google Scholar 

  3. Solez K, Morel-Maroger L, Sraer JD (1979) The morphology of “acute tubular necrosis” in man: analysis of 57 renal biopsies and a comparison with the glycerol model. Medicine (Baltimore) 58:362–376

    Article  CAS  Google Scholar 

  4. Boesen EI, Crislip GR, Sullivan JC (2012) Use of ultrasound to assess renal reperfusion and P-selectin expression following unilateral renal ischemia. Am J Physiol Renal Physiol 303:F1333–F1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Iacobellis F, Berritto D, Belfiore MP, Di Lanno I, Maiorino M, Saba L, Grassi R (2014) Meaning of free intraperitoneal fluid in small-bowel obstruction: preliminary results using high-frequency microsonography in a rat model. J Ultrasound Med 33:887–893

    Article  PubMed  Google Scholar 

  6. Belfiore MP, Berritto D, Iacobellis F, Rossi C, Nigro G, Rotundo IL, Cozzolino S, Cappabianca S, Rotondo A, Grassi R (2011) A longitudinal study on BIO14.6 hamsters with dilated cardiomyopathy: micro-echocardiographic evaluation. Cardiovasc Ultrasound 9:39

    Article  PubMed  PubMed Central  Google Scholar 

  7. Arendshorst WJ, Finn WF, Gottschalk CW (1975) Pathogenesis of acute renal failure following temporary renal ischemia in the rat. Circ Res 37:558–568

    Article  CAS  PubMed  Google Scholar 

  8. Hueper K, Gutberlet M, Rong S, Hartung D, Mengel M, Xia Lu, Haller H, Wacker F, Meier M, Gueler F (2014) Acute kidney injury: arterial spin labeling to monitor renal perfusion impairment in mice—comparison with histopathologic results and renal function. Radiology 270:117–124

    Article  PubMed  Google Scholar 

  9. Park BK, Kim SH, Moon MH, Jung SI (2005) Imaging features of gray-scale and contrast-enhanced color Doppler US for the differentiation of transient renal arterial ischemia and arterial infarction. Korean J Radiol 6:179–184

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sato H, Tanaka T, Kita T, Tanaka N (2010) A quantitative study of lung dysfunction following hemorrhagic shock in rats. Int J Exp Pathol 91:267–275

    Article  PubMed  PubMed Central  Google Scholar 

  11. Halvorsen L, Gunther RA, Dubick MA, Holcroft JW (1991) Dose–response characteristics of hypertonic saline–dextran solutions. J Trauma 31:785–793

    Article  CAS  PubMed  Google Scholar 

  12. Eser O, Kalkan E, Cosar M, Buyukbas S, Avunduk MC, Aslan A, Kocabas V (2007) The effect of aprotinin on brain ischemic–reperfusion injury after hemorrhagic shock in rats: an experimental study. J Trauma 63:373–378

    Article  PubMed  Google Scholar 

  13. Stein HJ, Hinder RA, Oosthuizen MMJ (1990) Gastric mucosal injury caused by hemorrhagic shock and reperfusion: protective role of the antioxidant glutathione. Surgery 108:467–473

    CAS  PubMed  Google Scholar 

  14. Greiffenstein P, Mathis KW, Stouwe CV, Molina PE (2007) Alcohol binge before trauma–hemorrhage impairs integrity of host defense mechanisms during recovery. Alcohol Clin Exp Res 31:704–715

    CAS  PubMed  Google Scholar 

  15. Rönn T, Lendemans S, de Groot H, Petrat F (2011) A new model of severe hemorrhagic shock in rats. Comp Med 61:419–426

    PubMed  PubMed Central  Google Scholar 

  16. Rohrig R, Wegewitz C, Lendemans S, Petrat F, de Groot H (2014) Superiority of acetate compared with lactate in a rodent model of severe hemorrhagic shock. J Surg Res 186:338–345

    Article  CAS  PubMed  Google Scholar 

  17. Grassi R, Cavaliere C, Cozzolino S, Mansi L, Cirillo S, Tedeschi G, Franchi R, Russo P, Cornacchia S, Rotondo A (2009) Small animal imaging facility: new perspectives for the radiologist. Radiol Med 114:152–167

    Article  CAS  PubMed  Google Scholar 

  18. Grassi R, Lagalla R, Rotondo A (2008) Genomics, proteomics, MEMS and SAIF: which role for diagnostic imaging? Radiol Med 113:775–778

    Article  CAS  PubMed  Google Scholar 

  19. Platt JF (1992) Duplex Doppler evaluation of native kidney dysfunction: obstructive and nonobstructive disease. AJR Am J Roentgenol 158:1035–1042

    Article  CAS  PubMed  Google Scholar 

  20. Gao J, Hentel K, Zhu Q, Ma T, Shih G, Mennitt K, Min R (2011) Doppler angle correction in the measurement of intrarenal parameters. Int J Nephrol Renovasc Dis 4:49–55

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rivers BJ, Walter PA, O'Brien TD, Polzin DJ (1996) Duplex Doppler estimation of Pourcelot resistive index in arcuate arteries of sedated normal cats. J Vet Intern Med 10(1):28–33

    Article  CAS  PubMed  Google Scholar 

  22. Zhong Z, Enomoto N, Connor HD, Moss N, Mason RP, Thurman RG (1999) Glycine improves survival after hemorrhagic shock in the rat. Shock 12:54–62

    Article  CAS  PubMed  Google Scholar 

  23. Russell DH, Barreto JC, Klemm K, Miller TA (1995) Hemorrhagic shock increases gut macromolecular permeability in the rat. Shock 4:50–55

    Article  CAS  PubMed  Google Scholar 

  24. Pohlmann A, Hentschel J, Fechner M, Hoff U, Bubalo G, Arakelyan K, Cantow K, Seeliger E, Flemming B, Waiczies H, Waiczies S, Schunck WH, Dragun D, Niendorf T (2013) High temporal resolution parametric MRI monitoring of the initial ischemia/reperfusion phase in experimental acute kidney injury. PLoS ONE 8:e57411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Darmon M, Schnell D, Zeni F (2010) Doppler-based renal resistive index: a comprehensive review. In: Vincent JL (ed) Yearbook of intensive care and emergency medicine, vol 2010. Springer, Berlin

    Google Scholar 

  26. Berritto D, Iacobellis F, Belfiore MP, Rossi C, Saba L, Grassi R (2014) Early MRI findings of small bowel obstruction: an experimental study in rats. Radiol Med 119:377–383

    Article  PubMed  Google Scholar 

  27. Somma F, Berritto D, Iacobellis F, Landi N, Cavaliere C, Corona M, Russo S, Di Mizio R, Rotondo A, Grassi R (2013) 7T μMRI of mesenteric venous ischemia in a rat model: timing of the appearance of findings. Magn Reson Imaging 31(3):408–413

    Article  PubMed  Google Scholar 

  28. Berritto D, Iacobellis F, Somma F, Corona M, Faggian A, Iacomino A, Feragalli B, Saba L, La Porta M, Grassi R (2013) 7T mMR in the assessment of acute arterial mesenteric ischemia in a rat model. J Biol Regul Homeost Agents 27:771–779

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Iacobellis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iacobellis, F., Segreto, T., Berritto, D. et al. A rat model of acute kidney injury through systemic hypoperfusion evaluated by micro-US, color and PW-Doppler. Radiol med 124, 323–330 (2019). https://doi.org/10.1007/s11547-018-0962-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-018-0962-8

Keywords

Navigation