Skip to main content
Log in

Myocardial delayed enhancement using a single dose (0.1 mmol/kg) of gadobenate dimeglumine: contrast resolution versus intraventricular blood and viable myocardium

Delayed enhancement miocardico con singola dose (0.1 mmol/kg) di gadobenato dimeglumina: risoluzione di contrasto rispetto al sangue ventricolare ed al miocardio sano

  • Cardiac Radiology/Cardioradiologia
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

This study was done to estimate delayed enhancement (DE) contrast resolution of infarcted myocardium (IM) relative to intraventricular blood (IB) and viable myocardium (VM) using gadobenate dimeglumine (Gd-BOPTA).

Materials and methods

After approval from the Ethics Committee, we retrospectively evaluated 21 consecutive patients (61±10 years) with a healed myocardial infarction who underwent 1.5-T magnetic resonance (MR) imaging using an inversion-recovery-prepared turbo gradient-echo sequence 10 minutes after injection of 0.1 mmol/kg of Gd-BOPTA. Signal intensity (SI) was measured in arbitrary units (au) for IM, IB, VM, and outside the patient. Contrast-to-noise ratio (CNR) was calculated for IM to IB and IM to VM. Seven consecutive patients (59±6 years) with a healed myocardial infarction studied with similar technique but with 0.1 mmol/kg of gadoterate meglumine (Gd-DOTA) served as the control group. The Mann-Whitney U test was used to compare groups.

Results

Mean SI of IM was 44±16 au for Gd-BOPTA and 20±6 au for Gd-DOTA (p<0.001), that of IB 35±15 au and 14±5 au (p=0.016), and that of VM 7±3 au and 5±2 au (p=0.116), respectively. Mean IM to IB CNR was 10±7 for Gd-BOPTA and 8±5 for Gd-DOTA (p=0.836), that of IM to VM was 45±27 and 18±6, respectively (p=0.012).

Conclusions

Gd-BOPTA at 0.1 mmol/kg produced a higher myocardial DE and an IM to VM CNR than a single dose of Gd-DOTA. No significant difference was observed for IM to IB CNR.

Riassunto

Obiettivo

Scopo del nostro lavoro è stato stimare la risoluzione di contrasto del delayed enhancement (DE) associato a miocardio infartuato (MI) rispetto al sangue ventricolare (SV) e al miocardio sano (MS) ottenuta con gadobenato dimeglumina (Gd-BOPTA).

Materiali e metodi

Dopo approvazione del Comitato Etico, abbiamo valutato retrospettivamente 21 pazienti consecutivi (età 61±10 anni) con infarto miocardico cronico studiati mediante risonanza magnetica (RM) a 1,5 T con sequenza inversion-recovery turbo gradient-echo 10 minuti dopo somministrazione di 0.1 mmol/kg di Gd-BOPTA. Abbiamo misurato l’intensità di segnale (IS) in unità arbitrarie (ua) del MI, del SV, del MS e all’esterno del paziente e calcolato il rapporto contrasto-rumore (CNR) tra MI e SV e tra MI e MS. Una serie consecutiva di sette pazienti con infarto miocardico cronico (età 59±6 anni), studiati con tecnica analoga e 0.1 mmol/kg di gadoterato meglumina (Gd-DOTA) è stata utilizzata come gruppo di controllo. La comparazione tra i due gruppi è stata effettuata mediante il test U di Mann-Whitney.

Risultati

L’IS media del MI è risultata 44±16 ua per Gd-BOPTA e 20±6 ua per Gd-DOTA (p<0.001), quella del SV 35±15 ua e 14±5 ua (p=0.016), quella del MS 7±3 ua e 5±2 ua (p=0.116), rispettivamente. Il CNR tra MI e SV è risultato 10±7 per Gd-BOPTA e 8±5 per Gd-DOTA (p=0.836), quello tra MI e MS 45±27 e 18±6, rispettivamente (p=0.012).

Conclusioni

Gd-BOPTA a 0.1 mmol/kg consente di ottenere DE miocardico e CNR tra MI e MS superiori rispetto a Gd-DOTA alla stessa dose. Il CNR tra MI e SV non è significativamente diverso.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References/Bibliografia

  1. Kim RJ, Fieno DS, Parrish TB et al (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100:1922–2002

    Google Scholar 

  2. Selvanayagam JB, Kardos A, Francis JM et al (2004) Value of delayed enhancement cardiovascular magnetic resonance imaging in predicting myocardial viability after surgical revascularization. Circulation 110:1535–1541

    Article  PubMed  Google Scholar 

  3. Kim RJ, Wu E, Rafael A et al (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453

    Article  CAS  PubMed  Google Scholar 

  4. Vogel-Claussen J, Rochitte CE, Wu KC et al (2006) Delayed enhancement MR imaging: utility in myocardial assessment. Radiographics 26:795–810

    Article  PubMed  Google Scholar 

  5. Judd RM, Kim RJ (2002) Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging. Circulation 106:e6

    Article  PubMed  Google Scholar 

  6. Schlosser T, Hunold P, Herborn CU et al (2005) Myocardial infarct: depiction with contrast-enhanced MR imaging-comparison of gadopentetate and gadobenate. Radiology 236:1041–1046

    Article  PubMed  Google Scholar 

  7. Sardanelli F, Quarenghi M (2006) Delayed enhancement of subendocardial infarcted myocardium with gadobenate dimeglumine: a paradoxical effect-Is a double dose too much? Radiology 3:914–916

    Article  Google Scholar 

  8. Balci NC, Inan N, Anik Y et al (2006) Low-dose gadobenate dimeglumine versus standard-dose gadopentate dimeglumine for delayed contrast-enhanced cardiac magnetic resonance imaging. Acad Radiol 13:833–839

    Article  PubMed  Google Scholar 

  9. Thygesen K, Alpert JS, White HD, Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction et al (2007) Universal definition of myocardial infarction. Circulation 116:2634–2653

    Article  PubMed  Google Scholar 

  10. Edelman RR (2004) Contrast-enhanced MR imaging of the heart: overview of the literature. Radiology 232:653–668

    Article  PubMed  Google Scholar 

  11. Bauner KU, Reiser MF, Huber AM (2009) Low dose gadobenate dimeglumine for imaging of chronic myocardial infarction in comparison with standard dose gadopentetate dimeglumine. Invest Radiol 44:95–104

    Article  CAS  PubMed  Google Scholar 

  12. Cavagna FM, Maggioni F, Castelli PM et al (1997) Gadolinium chelates with weak binding to serum proteins. A new class of high-efficiency, general purpose contrast agents for magnetic resonance imaging. Invest Radiol 32:780–796

    Article  CAS  PubMed  Google Scholar 

  13. Cavagna FM, Marzola P, Daprà M et al (1994) Binding of gadobenate dimeglumine to proteins extravasated into interstitial space enhances conspicuity of reperfused infarcts. Invest Radiol 29(Suppl 2):S50–S53

    Article  PubMed  Google Scholar 

  14. Pintaske J, Martirosian P, Graf H et al (2006) Relaxivity of gadopentetate dimeglumine (Magnevist), gadobutrol (Gadovist), and gadobenate dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla. Invest Radiol 41:213–221. Erratum in Invest Radiol 41:859

    Article  PubMed  Google Scholar 

  15. Giesel FL, von Tengg-Kobligk H, Wilkinson ID et al (2006) Influence of human serum albumin on longitudinal and transverse relaxation rates (R1 and R2) of magnetic resonance contrast agents. Invest Radiol 41:222–228

    Article  CAS  PubMed  Google Scholar 

  16. Wagner A, Mahrholdt H, Holly TA et al (2003) Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 361:374–379

    Article  PubMed  Google Scholar 

  17. Lee VS, Resnick D, Tiu SS et al (2004) MR imaging evaluation of myocardial viability in the setting of equivocal SPECT results with (99m)Tc sestamibi. Radiology 230:191–197

    Article  PubMed  Google Scholar 

  18. Broome DR, Girguis MS, Baron PW et al (2007) Gadodiamide-associated nephrogenic systemic fibrosis: why radiologists should be concerned. AJR Am J Roentgenol 188:586–592

    Article  PubMed  Google Scholar 

  19. Sadowski EA, Bennett LK, Chan MR et al (2007) Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology 243:148–157

    Article  PubMed  Google Scholar 

  20. Prince MR, Zhang H, Morris M et al (2008) Incidence of nephrogenic systemic fibrosis at two large medical centers. Radiology 248:807–816

    Article  PubMed  Google Scholar 

  21. Ligabue G, Fiocchi F, Ferraresi S et al (2008) 3-Tesla MRI for the evaluation of myocardial viability: a comparative study with 1.5-Tesla MRI. Radiol Med 113:347–362

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Sardanelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papini, G., Tritella, S., Secchi, F. et al. Myocardial delayed enhancement using a single dose (0.1 mmol/kg) of gadobenate dimeglumine: contrast resolution versus intraventricular blood and viable myocardium. Radiol med 115, 693–701 (2010). https://doi.org/10.1007/s11547-010-0495-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-010-0495-2

Keywords

Parole chiave

Navigation