Skip to main content

Advertisement

Log in

Mathematical Insights in Evaluating State Dependent Effectiveness of HIV Prevention Interventions

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Mathematical models have been used to simulate HIV transmission and to study the use of preexposure prophylaxis (PrEP) for HIV prevention. Often a single intervention outcome over 10 years has been used to evaluate the effectiveness of PrEP interventions. However, different metrics express a wide variation over time and often disagree in their forecast on the success of the intervention. We develop a deterministic mathematical model of HIV transmission and use it to evaluate the public-health impact of oral PrEP interventions. We study PrEP effectiveness with respect to different evaluation methods and analyze its dynamics over time. We compare four traditional indicators, based on cumulative number or fractions of infections prevented, on reduction in HIV prevalence or incidence and propose two additional methods, which estimate the burden of the epidemic to the public-health system. We investigate the short and long term behavior of these indicators and the effects of key parameters on the expected benefits from PrEP use. Our findings suggest that public-health officials considering adopting PrEP in HIV prevention programs can make better informed decisions by employing a set of complementing quantitative metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbas, U. L., Anderson, R. M., & Mellors, J. W. (2007). Potential impact of antiretroviral chemoprophylaxis on HIV-1 transmission in resource-limited settings. PLoS ONE, 2, e875.

    Article  Google Scholar 

  • AIDS epidemic update: November 2009. UNAIDS/WHO, 2009. http://data.unaids.org/pub/report/2009/jc1700_epi_update_2009_en.pdf.

  • Alsallaq, R. A., Schiffer, J. T., Longini, I. M., Wald, A., Corey, L., & Abu-Raddad, L. J. (2010). Population level impact of an imperfect prophylactic vaccine for Herpes Simplex Virus-2. Sex. Transm. Dis., 37, 290–297.

    Google Scholar 

  • Bhunu, C. P., Mushayabasa, S., & Tchuenche, J. M. (2011). A theoretical assessment of the effects of smoking on the transmission dynamics of tuberculosis. Bull. Math. Biol., 73, 1333–1357.

    Article  MathSciNet  MATH  Google Scholar 

  • Blower, S. M., & Dowlatabadi, H. (1994). Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int. Stat. Inst., 62, 229–243.

    Article  MATH  Google Scholar 

  • Blower, S. M., Koelle, K., Kirschner, D. E., & Mills, J. (2001). Live attenuated HIV vaccines: predicting the tradeoff between efficacy and safety. Proc. Natl. Acad. Sci. USA, 98, 3618–3623.

    Article  Google Scholar 

  • Boily, M. C., Baggaley, R. F., Wang, L., Masse, B., White, R. G., Hayes, R. J., & Alary, M. (2009). Heterosexual risk of HIV-1 infection per sexual act: systematic review and meta-analysis of observational studies. Lancet Infect. Dis., 9, 118–129.

    Article  Google Scholar 

  • Desai, K., Sansom, S. L., Ackers, M. L., Stewart, S. R., Hall, H. I., Hu, D. J., Sanders, R., Scotton, C. R., Soorapanth, S., Boily, M. C., Garnett, G. P., & McElroy, P. D. (2008). Modeling the impact of HIV chemoprophylaxis among men who have sex with men in the United States: infections prevented and cost-effectiveness. AIDS, 22, 1829–1839.

    Article  Google Scholar 

  • Dimitrov, D. T., Masse, B., & Boily, M. C. (2010). Who will benefit from a wide-scale introduction of vaginal microbicides in developing countries? Stat. Commun. Infect. Dis., 2(1), 4.

    MathSciNet  Google Scholar 

  • Dimitrov, D. T., Boily, M. C., Baggaley, R. F., & Masse, B. (2011). Modeling the gender-specific impact of vaginal microbicides on HIV transmission. J. Theor. Biol., 288, 9–20.

    Article  Google Scholar 

  • Dimitrov, D. T., Masse, B. R., & Marie-Claude, B. (2013). Beating the placebo in HIV prevention efficacy trials: the role of the minimal efficacy bound. J. Acquir. Immune Defic. Syndr., 62(1), 95–101. doi:10.1097/QAI.0b013e3182785638

    Article  Google Scholar 

  • Eisingerich, A. B., Wheelock, A., Gomez, G. B., Garnett, G. P., Dybul, M. R., & Piot, P. K. (2012). Attitudes and acceptance of oral and parenteral HIV preexposure prophylaxis among potential user groups: a multinational study. PLoS ONE, 7, e28238.

    Article  Google Scholar 

  • Foss, A. M., Vickerman, P. T., Heise, L., & Watts, C. H. (2003). Shifts in condom use following microbicide introduction: should we be concerned? AIDS, 17, 1227–1237.

    Article  Google Scholar 

  • Grant, R. M., Lama, J. R., Anderson, P. L., et al. (2010). Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. N. Engl. J. Med., 363, 2587–2599.

    Article  Google Scholar 

  • Greene, E., Batona, G., Hallad, J., Johnson, S., Neema, S., & Tolley, F. (2010). Acceptability and adherence of a candidate microbicide gel among high-risk women in Africa and India. Cult. Heatlh Sex., 2(7), 739–754.

    Article  Google Scholar 

  • Hallett, T. B., Alsallaq, R. A., Baeten, J. M., Weiss, H., Celum, C., Gray, R., & Abu-Raddad, L. (2011). Will circumcision provide even more protection from HIV to women and men? New estimates of the population impact of circumcision interventions. Sex. Transm. Infect., 87, 88–93.

    Article  Google Scholar 

  • Kalichman, S. C., Simbayi, L. C., Cain, D., & Jooste, S. (2009). Heterosexual anal intercourse among community and clinical settings in Cape Town, South Africa. Sex. Transm. Infect., 85, 411–415.

    Article  Google Scholar 

  • Karim, Q. A., Karim, S. S. A., Frohlich, J. A., Grobler, A. C., Baxter, C., Mansoor, L. E., Kharsany, A. B. M., Sibeko, S., Mlisana, K. P., Omar, Z., Gengiah, T. N., Maarschalk, S., Arulappan, N., Mlotshwa, M., Morris, L., Taylor, D., & and on behalf of the CAPRISA 004 Trial Group (2010). Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science, 329, 1168–1174.

    Article  Google Scholar 

  • Mid-year population estimates 2011. Statistics South Africa http://www.statssa.gov.za/publications/P0302/P03022011.pdf

  • Morgan, D., Mahe, C., Mayanja, B., Okongo, J. M., Lubega, R., & Whitworth, J. A. G. (2002). HIV-1 infection in rural Africa: is there a difference in median time to AIDS and survival compared with that in industrialized countries? AIDS, 16, 597–603.

    Article  Google Scholar 

  • Mtisi, E., Rwezaura, H., & Tchuenche, J. M. (2009). A mathematical analysis of malaria and tuberculosis co-dynamics. Discrete Contin. Dyn. Syst., Ser. A, 12, 827–864.

    Article  MathSciNet  MATH  Google Scholar 

  • Mubayi, A., Zaleta, C. K., Martcheva, M., & Castillo-Chavez, C. (2010). A cost-based comparison of quarantine strategies for new emerging diseases. Math. Biosci. Eng., 7, 687–717.

    Article  MathSciNet  MATH  Google Scholar 

  • Mubayi, A., Greenwood, P., Wang, X. H., Castillo-Chavez, C., Gorman, D. M., Gruenewald, P., & Saltz, R. F. (2011). Types of drinkers and drinking settings: an application of a mathematical model. Addiction, 106, 749–758.

    Article  Google Scholar 

  • Mwasa, A., & Tchuenche, J. M. (2011). Mathematical analysis of a cholera model with public health interventions. Biosystems, 105, 190–200.

    Article  Google Scholar 

  • Partners PrEP Study Team (2011). Pivotal study finds that HIV medications are highly effective as prophylaxis against HIV infection in men and women in Africa. Press Release 2011. http://depts.washington.edu/uwicrc/research/studies/files/PrEP_PressRelease-UW_13Jul2011.pdf

  • Porter, K., & Zaba, B. (2004). The empirical evidence for the impact of HIV on adult mortality in the developing world: data from serological studies. AIDS, 18, S9–S17.

    Article  Google Scholar 

  • Pretorius, C., Stover, J., Bollinger, L., Bacaer, N., & Williams, B. (2010). Evaluating the cost-effectiveness of pre-exposure prophylaxis (PrEP) and its impact on HIV-1 transmission in South Africa. PLoS ONE, 5, e13646.

    Article  Google Scholar 

  • Supervie, V., Garcia-Lerma, J. G., Heneine, W., & Blower, S. (2010). HIV, transmitted drug resistance, and the paradox of preexposure prophylaxis. Proc. Natl. Acad. Sci. USA, 107, 12381–12386.

    Article  Google Scholar 

  • Vissers, D. C. J., Voeten, H. A. C. M., Nagelkerke, N. J. D., Habbema, J. D. F, & de Vlas, S. J. (2008). The impact of pre-exposure prophylaxis (PrEP) on HIV epidemics in Africa and India: a simulation study. PLoS ONE, 3, e2077.

    Article  Google Scholar 

  • Wawer, M. J., Gray, R. H., Sewankambo, N. K., Serwadda, D., Li, X. B., Laeyendecker, O., Kiwanuka, N., Kigozi, G., Kiddugavu, M., Lutalo, T., Nalugoda, F., Wabwire-Mangen, F., Meehan, M. P., & Quinn, T. C. (2005). Rates of HIV-1 transmission per coital act, by stage of HIV-1 infection, in Rakai, Uganda. J. Infect. Dis., 191, 1403–1409.

    Article  Google Scholar 

  • Wilson, D. P., Coplan, P. M., Wainberg, M. A., & Blower, S. M. (2008). The paradoxical effects of using antiretroviral-based microbicides to control HIV epidemics. Proc. Natl. Acad. Sci. USA, 105, 9835–9840.

    Article  Google Scholar 

  • World Health Organization (WHO) (2003). Making choices in health: WHO guide to cost effectiveness analysis. Geneva: World Health Organization. http://whqlibdoc.who.int/publications/2003/9241546018.pdf.

    Google Scholar 

Download references

Acknowledgements

D.D. is supported by a grant from the National Institutes of Health (Grant number 5 U01 AI068615-03). Y.Z., H.L., and Y.K. are supported in part by DMS-0920744.

The authors thank the anonymous referees for many useful comments on an earlier draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqin Zhao.

Appendix

Appendix

1.1 A.1 Approximations of the Indicators at the Start of the Intervention

Based on the initial conditions for the two models, we can obtain the approximate behavior of the indicator at the start of the intervention. To facilitate this, we let I T (0)=I(0)+I p(0) and S T (0)=S(0)+S p(0). Recall that N(0)=S(0)+I(0) when there is no PrEP user and N(0)=S(0)+S p(0)+I(0)+I p(0) when there are PrEP users.

As examples, we will provide the approximation computation for the prevalence indicator, cumulative indicator, and fractional indicator. Recall that \(P_{I}= 1-\frac{[\frac{I^{p}+I}{S^{p}+S+I^{p}+I}]_{\mathrm{DP}}}{[\frac{I}{S+I}]}\). We will first estimate \([\frac{I}{S+I}]\) and \([\frac {I^{p}+I}{S^{p}+S+I^{p}+I}]_{\mathrm{DP}}\) separately:

$$ \everymath{\displaystyle} \begin{array}{rcl} \biggl[\frac{I}{S+I}\biggr] &\thickapprox& \frac{I(0)+\frac {dI}{dt}(0)\,dt}{I(0)+S(0)+(\frac{dI}{dt}+ \frac{dS}{dt})(0)\,dt} \\ \noalign{\vspace*{6pt}} &=& \frac{I(0)+[\beta\frac{S(0)I(0)}{N(0)}-(\mu+d)I(0)]\,dt}{I(0)+S(0)+ [\varLambda-\mu S(0)-(\mu+d)I(0)]\,dt} \\ \noalign{\vspace*{6pt}} &=& \frac{PN(0)+[\beta P(1-P)N(0)-(\mu+d)PN(0)]\,dt}{N(0)+ [\varLambda-\mu(1-P)N(0)-(\mu+d)PN(0)]\,dt} \\ \noalign{\vspace*{6pt}} &=& \frac{P+[\beta P(1-P)- (\mu+d)P]\,dt}{1+(\frac{\varLambda}{N(0)}-\mu-dP)\,dt}; \\ \end{array} \nonumber $$
$$ \everymath{\displaystyle} \begin{array}{l} \biggl[\frac{I^p+I}{S^p+S+I^p+I}\biggr]_{\mathrm{DP}} \\ \noalign{\vspace*{6pt}} \quad {}\thickapprox \frac{I_T(0)+(\frac{dI^p}{dt}+\frac {dI}{dt})(0)\,dt}{N(0)+(\frac{dS^p}{dt}+\frac{dS}{dt}+\frac {dI^p}{dt}+\frac{dI}{dt})(0)\,dt} \\ \noalign{\vspace*{6pt}} \quad {}= \frac{I_T(0)+\{[I_T(0)-\alpha_iI^p(0)][S_T(0)-\alpha_sS^p(0)]\frac{\beta}{N(0)}- (\mu+d)I_T(0)\}\,dt}{N(0)+[\varLambda-\mu N(0)-dI_T(0)]\,dt} \\ \noalign{\vspace*{6pt}} \quad {}= PN(0) \biggl(1+\biggl\{(1-P)N(0) \bigl[1-(1-\theta)k_1+ (1-\alpha_i) (1- \theta)k_1\bigr] \bigl[1-k_1 \\ \noalign{\vspace*{6pt}} \qquad {}+ (1-\alpha_s)k_1 \bigr]\cdot\frac{\beta}{N(0)}-(\mu+d)\biggr\}\,dt\biggr)\cdot\frac {1}{ N(0)+(\varLambda-\mu N(0)-dPN(0))\,dt} \\ \noalign{\vspace*{6pt}} \quad {}= \frac{P+\{[1-(1-\theta)k_1\alpha_i](1-\alpha_sk_1)\beta P(1-P)-(\mu+d)P\}\,dt}{1+(\frac{\varLambda}{N(0)}-\mu-dP)\,dt}. \\ \end{array} \nonumber $$

Then by the expression of prevalence indicator, we have

$$ \everymath{\displaystyle} \begin{array}{rcl} P_I&\thickapprox& 1- \frac{\frac{P+\{[1-(1-\theta)k_1\alpha_i](1-\alpha_sk_1)\beta P(1-P)- (\mu+d)P\}\,dt}{1+(\frac{\varLambda}{N(0)}-\mu-dP)\,dt}}{\frac{P+[\beta P(1-P)-(\mu+d)P]\,dt}{1+(\frac{\varLambda}{N(0)}-\mu-dP)\,dt}} \\ \noalign{\vspace*{6pt}} &=& 1-\frac{P+\{[1-(1-\theta)k_1\alpha_i](1-\alpha_sk_1)\beta P(1-P)-(\mu+d)P\}\,dt}{P+[\beta P(1-P)-(\mu+d)P]\,dt} \\ \noalign{\vspace*{6pt}} &=& 1- \frac{1+\{[1-(1-\theta)k_1\alpha_i](1-\alpha_sk_1)\beta (1-P)-(\mu+d)\}\,dt}{1+[\beta(1-P)-(\mu+d)]\,dt} \\ \noalign{\vspace*{6pt}} &\thickapprox& \bigl(-\bigl\{\bigl[1-(1- \theta)k_1\alpha_i\bigr](1-\alpha_sk_1) \beta (1-P)-(\mu+d)\bigr\}\,dt\bigr) \\ \noalign{\vspace*{6pt}} & & \bigl\{1-\bigl[\beta(1-P)-(\mu+d)\bigr]\,dt\bigr\} \\ \noalign{\vspace*{6pt}} &\thickapprox& -\bigl\{\bigl[1-(1- \theta)k_1\alpha_i\bigr](1-\alpha_sk_1) \beta (1-P)-(\mu+d)\bigr\}\,dt \\ \noalign{\vspace*{6pt}} & &{}+ \bigl[\beta(1-P)-(\mu+d)\bigr]\,dt \\ \noalign{\vspace*{6pt}} &=& \bigl[\alpha_s+(1-\theta) \alpha_i-(1-\theta)\alpha_s\alpha_ik_1 \bigr]k_1\beta(1-P)\,dt \\ \noalign{\vspace*{6pt}} &=& \bigl[\alpha_s+(1-\theta) \alpha_i(1-\alpha_s k_1)\bigr]k_1 \beta(1-P)\,dt. \\ \end{array} \nonumber $$

Thus, the slope at which the prevalence indicator increases at the beginning of the intervention can be approximated by

$$P_I'\thickapprox \bigl[\alpha_s+(1- \theta)\alpha_i(1-\alpha_s k_1) \bigr]k_1\beta(1-P). $$

By the expression of cumulative indicator, we have

Thus, the slope at which the cumulative indicator increases at the beginning of the intervention can be approximated by

$$C_I'\thickapprox \bigl[\alpha_s+(1- \theta)\alpha_i(1-\alpha_sk_1) \bigr]k_1\beta P(1-P)N(0). $$

By the expression of fractional indicator, we have

1.2 A.2 Asymptotic Approximations of the Indicators

To approximate the asymptotic behavior of indicators, we need to study the steady state of the two models. What is challenging is to study the steady state of the baseline model using PrEP (4). From

$$\frac{d(S^p+S+I^p+I)}{dt}=\varLambda-\mu \bigl(S^p+S+I^p+I \bigr)-d \bigl(I^p+I \bigr)=0 $$

we obtain that at steady state

$$N=\frac{\varLambda-d(I^p+I)}{\mu}. $$

From

$$\frac{d(S^p+I^p)}{dt}=k\varLambda-\mu \bigl(S^p+I^p \bigr)-dI^p=0 $$

we obtain that at steady state,

$$S^p=\frac{k\varLambda-(d+\mu)I^p}{\mu}. $$

Moreover, from

$$\frac{d(S+I)}{dt}=(1-k)\varLambda-\mu(S+I)-dI=0 $$

we obtain that at steady state,

$$S=\frac{(1-k)\varLambda-(d+\mu)I}{\mu}. $$

In the following, let m=μ+d and \(\hat{I}=I^{p}+I\). Then at steady state,

Hence,

$$ \beta \bigl[I+(1-\alpha_i)I^p \bigr] \biggl[ \frac{(1-k)\varLambda-mI}{\mu}+(1-\alpha_s)\frac {k\varLambda- mI^p}{\mu} \biggr]= m\hat{I} \frac{\varLambda-d\hat{I}}{\mu}. \nonumber $$

Let \(p=[\frac{I^{p}}{I^{p}+I}]_{\mathrm{DP}}=[\frac{I^{p}}{\hat{I}}]_{\mathrm{DP}}\), and assume that \(\hat{I}=I^{p}+I\neq0\) at steady state. Then

$$ \everymath{\displaystyle} \begin{array}{rcl} & & \beta(\hat{I}-\alpha_ip\hat{I}) \biggl[\frac{(1-k)\varLambda-m(1-p)\hat {I}}{\mu}+ (1-\alpha_s)\frac{k\varLambda-mp\hat{I}}{\mu} \biggr]-m \hat{I}\frac{\varLambda-d\hat {I}}{\mu}=0, \\ \noalign{\vspace*{6pt}} & & \beta\hat{I}(1-\alpha_ip) \biggl[ \frac{(1-k)\varLambda-m(1-p)\hat{I}}{\mu }+(1-\alpha_s) \frac{k\varLambda-mp\hat{I}}{\mu} \biggr]=m\hat{I} \frac{\varLambda-d\hat{I}}{\mu}, \\ \noalign{\vspace*{6pt}} & & \beta(1-\alpha_ip) \biggl[ \frac{(1-k)\varLambda+(1-\alpha_s)k\varLambda }{m}-(1-p)\hat{I}- (1-\alpha_s)p\hat{I} \biggr]= \varLambda-d\hat{I}, \\ \noalign{\vspace*{6pt}} & & \frac{\beta(1-\alpha_ip)(1-\alpha_sk)}{\mu+d}\varLambda-\beta (1- \alpha_ip) (1-\alpha_sp)\hat{I} =\varLambda-d\hat{I}, \\ \noalign{\vspace*{6pt}} & & \hat{I}=\frac{\frac{\beta(1-\alpha_ip)(1-\alpha_sk)}{\mu +d}-1}{\beta(1-\alpha_ip)(1-\alpha_sp)-d}\varLambda= \frac{R_0(1-\alpha_ip)(1-\alpha_sk)-1}{\beta(1-\alpha_ip)(1-\alpha_sp)-d}\varLambda. \\ \end{array} \nonumber $$

Notice that in the model with no intervention (6), the basic reproduction number is \(R_{0}=\frac{\beta}{\mu+d}\), and the endemic steady state is \((\frac{1}{\beta-d}\varLambda,\frac{R_{0}-1}{\beta-d}\varLambda )\). By the definitions of the indicators, now we can find the expressions to approximate the asymptotic behavior of \(\hat{C}_{I}\) and \(\hat{F}_{I}\):

$$\hat{C}_I= \biggl[\frac{R_0-1}{\beta-d}- \frac{R_0(1-\alpha_ip)(1-\alpha_sk)-1}{\beta(1-\alpha_ip)(1-\alpha_sp)-d} \biggr] \varLambda; $$
$$\hat{F}_I=1-\frac{R_0(1-\alpha_ip)(1-\alpha_sk)-1}{ R_0-1}\frac{\beta-d}{\beta(1-\alpha_ip)(1-\alpha_sp)-d}. $$

Now consider the prevalence indicator, we want to find \([\frac{I^{p}+I}{S^{p}+S+I^{p}+I}]_{\mathrm{DP}}\) at the steady state.

$$ \everymath{\displaystyle} \begin{array}{l} \frac{dI^p}{dt}+(1-\alpha_s) \frac{dI}{dt} \\ \noalign{\vspace*{6pt}} \quad {}= (1-\alpha_s)\beta \frac{(S^p+S)I}{N}+(1-\alpha_s) (1-\alpha_i)\beta \frac{(S^p+S)I^p}{N} \\ \noalign{\vspace*{6pt}} \qquad {}- (\mu+d)\bigl[I^p+(1- \alpha_s)I\bigr] \\ \noalign{\vspace*{6pt}} \quad {}= (1-\alpha_s)\beta\bigl[I+(1- \alpha_i)I^p\bigr]\frac{S^p+S}{N}-(\mu +d) \bigl[I^p+(1-\alpha_s)I\bigr]=0. \\ \end{array} \nonumber $$

Hence,

$$ \everymath{\displaystyle} \begin{array}{rcl} \frac{S^p+S}{N}&=&\frac{\mu+d}{(1-\alpha_s)\beta} \frac{1-\alpha_s\frac {I}{I^p+I}}{1-\alpha_i\frac{I^p}{I^p+I}}=R_0^{-1}\frac{1}{1-\alpha_s}\frac{1-\alpha_s(1-p)}{1-\alpha_ip}; \\ \noalign{\vspace*{6pt}} \frac{I^p+I}{N}&=&1-\frac{\mu+d}{(1-\alpha_s)\beta} \frac{1-\alpha_s\frac{I}{I^p+I}}{1-\alpha_i\frac{I^p}{I^p+I}}=1-R_0^{-1}\frac {1}{1-\alpha_s} \frac{1-\alpha_s(1-p)}{1-\alpha_ip}. \\ \end{array} \nonumber $$

By the definition of prevalence indicator, the asymptotical behavior of the prevalence indicator can be determined by

$$P_I=1-\frac{1-R_0^{-1}\frac{1}{1-\alpha_s}\frac{1-\alpha_s(1-p)}{1-\alpha_ip}}{1-R_0^{-1}}=1-\frac{R_0-\frac{1-\alpha_s(1-p)}{(1-\alpha_s)(1-\alpha_ip)}}{R_0-1}. $$

For the cumulative indicator at the steady state, we have

$$ \everymath{\displaystyle} \begin{array}{rcl} \frac{d}{dt}C_I&=&\biggl[ \frac{d}{dt}I_{\mathrm{New}}\biggr]-\biggl[\frac {d}{dt} \bigl(I^p_{\mathrm{New}}+I_{\mathrm{New}}\bigr)\biggr]_{\mathrm{DP}}, \\ \noalign{\vspace*{6pt}} \frac{d}{dt}C_I&=&\bigl[(\mu+d)I \bigr]-\bigl[(\mu+d) \bigl(I^p+I\bigr)\bigr]_{\mathrm{DP}} \\ \noalign{\vspace*{6pt}} &=& \biggl(\frac{\beta-(\mu+d)}{\beta-d}-\frac{\beta(1-\alpha_i p)(1-\alpha_s k)-(\mu+d)}{ \beta(1-\alpha_i p)(1-\alpha_s p)-d}\biggr) \varLambda \\ \noalign{\vspace*{6pt}} &=& (\mu+d) \biggl(\frac{R_0-1}{\beta-d}- \frac{R_0(1-\alpha_i p)(1-\alpha_s k)-1}{ \beta(1-\alpha_i p)(1-\alpha_s p)-d}\biggr)\varLambda. \\ \end{array} \nonumber $$

We see that the cumulative indicator keeps increasing, and eventually the rate approaches a constant.

Finally, we look at the annual incidence indicator

$$ \everymath{\displaystyle} \begin{array}{rcl} aI_I(n)&=&1-\frac{[\frac {I^p_{\mathrm{New}}(n+1)+I_{\mathrm{New}}(n+1)-(I^p_{\mathrm{New}}(n)+I_{\mathrm{New}}(n))}{S^p(n)+S(n)}]_{\mathrm{DP}}}{ [\frac{I_{\mathrm{New}}(n+1)-I_{\mathrm{New}}(n)}{S(n)}]} \\ \noalign{\vspace*{6pt}} &=& 1-\frac{[\frac{\frac{d}{dt}(I^p_{\mathrm{New}}(n+q)+ I_{\mathrm{New}}(n+s))}{S^p(n)+S(n)}]_{\mathrm{DP}}}{[\frac{\frac{d}{dt}I_{\mathrm{New}} (n+r)}{S(n)}]} \quad \mbox{with some}\ q,s,r\in[0,1], \\ \end{array} \nonumber $$

then at steady state, we have

$$ \everymath{\displaystyle} \begin{array}{rcl} aI_I&=&1-\frac{[\frac{\frac{d}{dt}(I^p_{\mathrm{New}}+I_{\mathrm{New}})}{S^p+S}]_{\mathrm{DP}}}{ [\frac{\frac{d}{dt}I_{\mathrm{New}}}{S}]}= 1- \frac{[\frac{(\mu+d)(I^p+I)}{S^p+S}]_{\mathrm{DP}}}{[\frac{(\mu+d)I}{S}]}= 1-\frac{[\frac {I^p+I}{S^p+S}]_{\mathrm{DP}}}{[\frac{I}{S}]} \\ \noalign{\vspace*{6pt}} &=& 1-\frac{R_0\frac{(1-\alpha_s)(1-\alpha_i p)}{1-\alpha_s(1-p)}-1}{R_0-1}. \\ \end{array} \nonumber $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Dimitrov, D.T., Liu, H. et al. Mathematical Insights in Evaluating State Dependent Effectiveness of HIV Prevention Interventions. Bull Math Biol 75, 649–675 (2013). https://doi.org/10.1007/s11538-013-9824-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9824-7

Keywords

Navigation