Skip to main content

Advertisement

Log in

The Tumor Growth Paradox and Immune System-Mediated Selection for Cancer Stem Cells

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Cancer stem cells (CSCs) drive tumor progression, metastases, treatment resistance, and recurrence. Understanding CSC kinetics and interaction with their nonstem counterparts (called tumor cells, TCs) is still sparse, and theoretical models may help elucidate their role in cancer progression. Here, we develop a mathematical model of a heterogeneous population of CSCs and TCs to investigate the proposed “tumor growth paradox”—accelerated tumor growth with increased cell death as, for example, can result from the immune response or from cytotoxic treatments. We show that if TCs compete with CSCs for space and resources they can prevent CSC division and drive tumors into dormancy. Conversely, if this competition is reduced by death of TCs, the result is a liberation of CSCs and their renewed proliferation, which ultimately results in larger tumor growth. Here, we present an analytical proof for this tumor growth paradox. We show how numerical results from the model also further our understanding of how the fraction of cancer stem cells in a solid tumor evolves. Using the immune system as an example, we show that induction of cell death can lead to selection of cancer stem cells from a minor subpopulation to become the dominant and asymptotically the entire cell type in tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA, 100(7), 3983–3988.

    Article  Google Scholar 

  • Alarcon, T., Owen, M. R., Byrne, H. M., & Maini, P. K. (2006). Multiscale modelling of tumour growth and therapy: the influence of vessel normalisation on chemotherapy. Comput. Math. Methods Med., 7(2–3), 85–119.

    Article  MathSciNet  MATH  Google Scholar 

  • Almog, N., Ma, L., Raychowdhury, R., Schwager, C., Erber, R., Short, S., Hlatky, L., Vajkoczy, P., Huber, P. E., Folkman, J., & Abdollahi (2009). A transcriptional switch of dormant tumors to fast-growing angiogenic phenotype. Cancer Res., 69(3), 836–844.

    Article  Google Scholar 

  • Anderson, A. R. A., Weaver, A. M., Cummings, P. T., & Quaranta, V. (2006). Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell, 127, 905–915.

    Article  Google Scholar 

  • Barcellos-Hoff, M. H. (2001). It takes a tissue to make a tumor: epigenetics, cancer and the microenvironment. J. Mammary Gland Biol. Neoplasia, 6(2), 213–221.

    Article  Google Scholar 

  • Bellomo, N., & Delitala, M. (2008). From the mathematical kinetic, and stochastic game theory to modelling mutations, onset, progression and immune competition of cancer cells. Phys. Life Rev., 5, 183–206.

    Article  Google Scholar 

  • Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med., 3, 730–737.

    Article  Google Scholar 

  • Cammareri, P., Lombardo, Y., Francipane, M. G., et al. (2008). Isolation and culture of colon cancer stem cells. Methods Cell Biol., 86, 311–324.

    Article  Google Scholar 

  • Conde-Ramis, I., Drasdo, D., Anderson, A. R. A., & Chaplain, M. A. J. (2008). Modelling the influence of the e-cadherin—beta-catenin pathway in cancer cell invasion: A multi-scale approach. Biophys. J., 95(1), 155–165.

    Article  Google Scholar 

  • de Pillis, L., & Radunskaya, A. (2001). A mathematical tumor model with immune resistance and drug therapy: an optimal control approach. J. Theor. Med., 3, 79–100.

    Article  MATH  Google Scholar 

  • DeLisi, C., & Rescigno, A. (1977). Immune surveillance and neoplasia—I: a minimal mathematical model. Bull. Math. Biol., 39(2), 201–221.

    MathSciNet  MATH  Google Scholar 

  • Dick, J. E. (2003). Breast cancer stem cells revealed. Proc. Natl. Acad. Sci. USA, 100(7), 3547–3549.

    Article  Google Scholar 

  • Dingli, D., & Michor, F. (2006). Successful therapy must eradicate cancer stem cells. Stem Cells, 24(12), 2603–2610.

    Article  Google Scholar 

  • D’Onofrio, A. (2005). A general framework for modeling tumor-immune system competition and immunotherapy: Mathematical analysis and biomedical inferences. Physica D, 208, 220–235.

    Article  MathSciNet  MATH  Google Scholar 

  • Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J., & Schreiber, R. D. (2002). Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol., 3(11), 991–998.

    Article  Google Scholar 

  • Dunn, G. P., Old, L. J., & Schreiber, R. D. (2004). The three E’s of cancer immunoediting. Annu. Rev. Immunol., 22, 329–360.

    Article  Google Scholar 

  • Enderling, H., Alexander, N., Clark, E., et al. (2008). Dependence of invadopodia function on collagen fiber spacing and crosslinking: computational modeling and experimental evidence. Biophys. J., 95(5), 2203–2218.

    Article  Google Scholar 

  • Enderling, H., Anderson, A. R. A., Chaplain, M. A. J., Beheshti, A., Hlatky, L., & Hahnfeldt, P. (2009). Paradoxical dependencies of tumor dormancy and progression on basic cell kinetics. Cancer Res., 69(22), 8814–8821.

    Article  Google Scholar 

  • Enderling, H., Hlatky, L., & Hahnfeldt, P. (2009b). Migration rules: tumours are conglomerates of self-metastases. Br. J. Cancer, 100(12), 1917–1925.

    Article  Google Scholar 

  • Fioriti, D., Mischitelli, M., Di Monaco, F., et al. (2008). Cancer stem cells in prostate adenocarcinoma: a target for new anticancer strategies. J. Cell. Physiol., 216(3), 571–575.

    Article  Google Scholar 

  • Folkman, J. (1971). Tumor angiogenesis: therapeutic implications. N. Engl. J. Med., 285(21), 1182–1186.

    Article  Google Scholar 

  • Folkman, J., & Hanahan, D. (1991). Switch to the angiogenic phenotype during tumorigenesis. In Int. symp. Princess Takamatsu Cancer Res. Fund (Vol. 22, pp. 339–347).

    Google Scholar 

  • Ganguli, R., & Puri, I. K. (2006). Mathematical model for the cancer stem cell hypothesis. Cell Prolif., 39, 3–14.

    Article  Google Scholar 

  • Gatenby, R. A., & Gillies, R. J. (2008). A microenvironmental model of carcinogenesis. Nat. Rev. Cancer, 8(1), 56–61.

    Article  Google Scholar 

  • Gevertz, J. L., & Torquato, S. (2006). Modeling the effects of vasculature evolution on early brain tumor growth. J. Theor. Biol., 243(4), 517–531.

    Article  MathSciNet  Google Scholar 

  • Greese, B. (2006). Development, analysis and application of a nonlinear integro-differential equation in the context of cancer growth. Diplomarbeit (MSc thesis), University of Greifswald, Germany, and University of Alberta.

  • Hahnfeldt, P., Panigrahy, D., Folkman, J., & Hlatky, L. (1999). Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res., 59(19), 4770–4775.

    Google Scholar 

  • Hanahan, D., & Weinberg, R. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.

    Article  Google Scholar 

  • Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144, 646–674.

    Article  Google Scholar 

  • Hek, G. (2010). Geometric singular perturbation theory in biological practice. J. Math. Biol., 60(3), 347–386.

    Article  MathSciNet  Google Scholar 

  • Johnston, M. D., Maini, P. K., Chapman, S. J., Edwards, C. M., & Bodmer, W. F. (2010). On the proportion of cancer stem cells in a tumour. J. Theor. Biol., 266, 708–711.

    Article  Google Scholar 

  • Jones, C. K. R. T. (1994). Geometric singular perturbation theory. In J. Russell (Ed.), Dynamical systems, Montecatini Terme, Italy, 1994. Berlin: Springer. 2nd session of the Centro Internazionale Matematico Estivo (CIME).

    Google Scholar 

  • Kim, M.-Y., Oskarsson, T., Acharrya, S., et al. (2009). Tumor self-seeding by circulating cancer cells. Cell, 139(7), 1315–1326.

    Article  Google Scholar 

  • Kirschner, D., & Panetta, J. C. (1998). Modeling immunotherapy of the tumor-immune interaction. J. Math. Biol., 37(3), 235–252.

    Article  MATH  Google Scholar 

  • Kuznetsov, V. (1987). Mathematical modeling of the development of dormant tumors and immune stimulation of their growth. Cybern. Syst. Anal., 23(4), 556–564.

    Article  MATH  Google Scholar 

  • Lapidot, T., Sirard, C., Murdoch, B., et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into scid mice. Nature, 367(6464), 645–648.

    Article  Google Scholar 

  • Liu, W., Hillen, T., & Freedman, H. I. (2007). A mathematical model for M-phase specific chemotherapy including the G0-phase and immunoresponse. Math. Biosci. Eng., 4(2), 239–259.

    Article  MathSciNet  MATH  Google Scholar 

  • Maitland, N. J., & Colling, T. (2008). Prostate cancer stem cells: a new target for therapy. J. Clin. Oncol., 26(17), 2862–2870.

    Article  Google Scholar 

  • Mallet, D. G., & De Pillis, L. G. (2006). A cellular automata model of tumor-immune system interactions. J. Theor. Biol., 239(3), 334–350.

    Article  Google Scholar 

  • Marciniak-Czochra, A., Stiehl, T., Ho, A. D., Jäger, W., & Wagner, W. (2009). Modelling of asymmetric cell division in hematopoietic stem cells—regulation of self-renewal is essential for efficient repopulation. Stem Cells Dev., 18(3), 377–385.

    Article  Google Scholar 

  • Matzavinos, A., & Chaplain, M. A. J. (2004). Travelling-wave analysis of a model of the immune response to cancer. C. R. Biol., 327, 995–1008.

    Article  Google Scholar 

  • Morrison, S. J., & Kimble, J. (2006). Asymmetric and symmetric stem-cell divisions in development and cancer. Nature, 441(7097), 1068–1074.

    Article  Google Scholar 

  • Morton, C. I., Hlatky, L., Hahnfeldt, P., & Enderling, H. (2011). Non-stem cancer cell kinetics modulate solid tumor progression. Theor. Biol. Med. Model., 8(1), 48.

    Article  Google Scholar 

  • Naumov, G. N., Bender, E., Zurakowski, D., et al. (2006). A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J. Natl. Cancer Inst., 98(5), 316–325.

    Article  Google Scholar 

  • Norton, L. (2005). Conceptual and practical implications of breast tissue geometry: Toward a more effective, less toxic therapy. The Oncologist, 10(6), 370–381.

    Article  MathSciNet  Google Scholar 

  • Prehn, R. T. (1972). The immune reaction as a stimulator of tumor growth. Science, 176(4031), 170–171.

    Article  Google Scholar 

  • Prehn, R. T. (1991). The inhibition of tumor growth by tumor mass. Cancer Res., 51(1), 2–4.

    Google Scholar 

  • Quaranta, V., Rejniak, K. A., Gerlee, P., & Anderson, A. R. A. (2008). Invasion emerges from cancer cell adaptation to competitive microenvironments: quantitative predictions from multiscale mathematical models. Semin. Cancer Biol., 18(5), 338–348.

    Article  Google Scholar 

  • Quaranta, V., Weaver, A. M., Cummings, P. T., & Anderson, A. R. A. (2005). Mathematical modeling of cancer: the future of prognosis and treatment. Clin. Chim. Acta, 357(2), 173–179.

    Article  Google Scholar 

  • Quintana, E., Shackleton, M., Sabel, M. S., Fullen, D. R., Johnson, T. M., & Morrison, S. J. (2008). Efficient tumour formation by single human melanoma cells. Nature, 456(7222), 593–598.

    Article  Google Scholar 

  • Reya, R., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105–111.

    Article  Google Scholar 

  • Ribba, B., Alarcon, T., Marron, K., Maini, P. K., & Agur, Z. (2004). The use of hybrid cellular automaton models for improving cancer therapy. Lect. Notes Comput. Sci., 3305, 444–453.

    Article  Google Scholar 

  • Schatton, T., & Frank, M. H. (2009). Antitumor immunity and cancer stem cells. Ann. N.Y. Acad. Sci., 1176, 154–169.

    Article  Google Scholar 

  • Sherratt, J. A., & Nowak, M. A. (1992). Oncogenes, anti-oncogenes and the immune response to cancer: a mathematical model. Proc. Biol. Sci., 248(1323), 261–271.

    Article  Google Scholar 

  • Singh, S. K., Clarke, I. D., Terasaki, M., et al. (2004). Identification of human brain tumour initiating cells. Nature, 432(7015), 396–401.

    Article  Google Scholar 

  • Singh, S. K., Hawkins, C., Clarke, I. D., et al. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Res., 63(18), 5821–5828.

    Google Scholar 

  • Smallbone, K., Gatenby, R. A., Gillies, R. J., Maini, P. K., & Gavaghan, D. J. (2007). Metabolic changes during carcinogenesis: potential impact on invasiveness. J. Theor. Biol., 244(4), 703–713.

    Article  MathSciNet  Google Scholar 

  • Sole, R. V., Rodriguez-Caso, C., Diesboeck, T. S., & Saldance, J. (2008). Cancer stem cells as the engine of unstable tumor progression. J. Theor. Biol., 253.

  • Teng, W. L., Swann, J. B., Koebel, C. M., Schreiber, R. D., & Smyth, M. J. (2008). Immune-mediated dormancy: an equilibrium with cancer. J. Leukoc. Biol., 84(4), 988–993.

    Article  Google Scholar 

  • Todaro, M., Perez Alea, M., Di Stefano, A. B., et al. (2007). Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell, 1(4), 389–402.

    Article  Google Scholar 

  • Visvader, J., & Lindeman, G. J. (2008). Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat. Rev. Cancer, 8(10), 755–768.

    Article  Google Scholar 

  • Wang, Z. A., & Hillen, T. (2007). Classical solutions and pattern formation for a volume filling chemotaxis model. Chaos, 17, 037108. 13 pages.

    Article  MathSciNet  Google Scholar 

  • Wise, S. M., Lowengrub, J. A., Frieboes, H. B., & Cristini, V. (2008). Three-dimensional multispecies nonlinear tumor growth—I. J. Theor. Biol., 253, 524–543.

    Article  Google Scholar 

  • Youssefpour, H., Li, X., Lander, A. D., & Lowengrub, J. S. (2012). Multispecies model of cell lineages and feedback control in solid tumors. J. Theor. Biol., 304, 39–59.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Gerda de Vries and Jeff Bachman for fruitful discussions and remarks. The work of TH was supported by the Canadian NSERC. The work of HE was supported by the American Association for Cancer Research award number 08-40-02-ENDE (to HE) and the work of HE and PH was supported by the Office of Science (BER), US Department of Energy, under Award Number DE-SC0001434 (to PH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Hahnfeldt.

Appendix: Equivalence of Basic Stem Cell Models

Appendix: Equivalence of Basic Stem Cell Models

Here, we show that the three models for cancer stem cells that are illustrated in Fig. 2 are equivalent in the situation where the stem cell population is not declining. Let U(t) and V(t) denote the CSC and TC density at time t, and k the rate of CSC division. For the purpose of demonstrating this equivalence, we ignore TC divisions. We first describe a hypothetical “complete model” (i) that has all three features, then demonstrate that dropping feature (ii) maintains model generality, while dropping feature (iii) also maintains generality provided parameters are chosen in the complete model such that the CSC compartment never decreases in time.

Complete Model

We introduce the complete model that includes all three division fates described above. Let α 1 denote the fraction of symmetric division, α 2 the fraction of asymmetric division, and α 3 the fraction of symmetric commitment events, with α 1+α 2+α 3=1. A schematic is shown on the left in Fig. 2.

The change in cell populations due to CSC division events can then be described by:

Invoking the identity α 1=1−α 2α 3, we obtain the system

$$ \begin{array}{rcl} \dot{U} &=& (1-\alpha_2-2\alpha_3) k U,\\[4pt] \dot{V} &=& (\alpha_2+2\alpha_3) k U, \end{array} $$
(27)

where α 2+2α 3≠(0,1) and α 2+2α 3<1 (or equivalently, α 1>α 3). The last condition arises from the assumption that the number of CSCs does not decrease in time.

No Symmetric Commitment Model

This model assumes that CSC is a robust state that cannot be lost during mitosis (Enderling et al. 2009). Therefore, the dividing CSC always remains CSC, and the second daughter cell is either a CSC or a TC (Fig. 2). This model is the Complete Model with the additional condition of no chance of commitment, i.e., α 3=0. From a simple inspection of Equation System (27) with α 3=0, though, we see this model remains just as general as the Complete Model, since the leading coefficients on the right sides of the equations for U and V can range from 0 to 1 as before.

No Asymmetric Division Model

The model most often used in the literature ignores asymmetric CSC division (Ganguli and Puri 2006; Marciniak-Czochra et al. 2009; Wise et al. 2008). A mitotic CSC event either yields two CSC or two TC (Fig. 2). This model is the Complete Model with the additional condition of no chance of asymmetric division, i.e., α 2=0. From a simple inspection of Equation System (27) with α 2=0, though, we see this model remains just as general as the Complete Model, since the leading coefficients on the right sides of the equations for U and V can range from 0 to 1 as before.

In summary, we have shown that the “No Symmetric Commitment” and “No Asymmetric Division” models are individually equivalent to the “Complete Model,” and so to each other. We therefore discuss a mathematical model that essentially exploits the “No Symmetric Commitment” model above, with the appreciation that it will not only provide analytic confirmation of the tumor growth paradox revealed by our agent-based studies (Enderling et al. 2009), but will simultaneously confirm the applicability of various sets of cell division rules we could alternatively have employed to build the model.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hillen, T., Enderling, H. & Hahnfeldt, P. The Tumor Growth Paradox and Immune System-Mediated Selection for Cancer Stem Cells. Bull Math Biol 75, 161–184 (2013). https://doi.org/10.1007/s11538-012-9798-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9798-x

Keywords

Navigation