Skip to main content
Log in

Genetic Hotels for the Standard Genetic Code: Evolutionary Analysis Based upon Novel Three-Dimensional Algebraic Models

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Herein, we rigorously develop novel 3-dimensional algebraic models called Genetic Hotels of the Standard Genetic Code (SGC). We start by considering the primeval RNA genetic code which consists of the 16 codons of type RNY (purine-any base-pyrimidine). Using simple algebraic operations, we show how the RNA code could have evolved toward the current SGC via two different intermediate evolutionary stages called Extended RNA code type I and II. By rotations or translations of the subset RNY, we arrive at the SGC via the former (type I) or via the latter (type II), respectively. Biologically, the Extended RNA code type I, consists of all codons of the type RNY plus codons obtained by considering the RNA code but in the second (NYR type) and third (YRN type) reading frames. The Extended RNA code type II, comprises all codons of the type RNY plus codons that arise from transversions of the RNA code in the first (YNY type) and third (RNR) nucleotide bases. Since the dimensions of remarkable subsets of the Genetic Hotels are not necessarily integer numbers, we also introduce the concept of algebraic fractal dimension. A general decoding function which maps each codon to its corresponding amino acid or the stop signals is also derived. The Phenotypic Hotel of amino acids is also illustrated. The proposed evolutionary paths are discussed in terms of the existing theories of the evolution of the SGC. The adoption of 3-dimensional models of the Genetic and Phenotypic Hotels will facilitate the understanding of the biological properties of the SGC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ambrogelly, A., Palioura, S., & Soll, D. (2007). Natural expansion of the genetic code. Nat. Chem. Biol., 3(1), 29–35.

    Article  Google Scholar 

  • Ardell, D. H., & Sella, G. (2002). No accident: genetic codes freeze in error-correcting patterns of the standard genetic code. Philos. Trans. R. Soc. Lond. B, 357(1427), 1625–1642.

    Article  Google Scholar 

  • Beardon, A. F. (2005). Algebra and geometry. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Collins, D. W., & Jukes, T. H. (1994). Rates of transition and transversion in coding sequences since the human-rodent divergence. Genomics, 20, 386–396.

    Article  Google Scholar 

  • Crick, F. H. C. (1966). Genetic code-yesterday, today and tomorrow. Cold Spring Harbor Symp. Quant. Biol., 31, 1–5.

    Google Scholar 

  • Crick, F. H. C. (1968). The origin of the genetic code. J. Mol. Biol., 38, 367–379.

    Article  Google Scholar 

  • Davies, J. W., Gilbert, W., & Gorini, L. (1964). Streptomycin, suppression, and the code. Proc. Natl. Acad. Sci. USA, 51, 883–890.

    Article  Google Scholar 

  • Davis, B. K. (1999). Evolution of the genetic code. Prog. Biophys. Mol. Biol., 72, 157–243.

    Article  Google Scholar 

  • Davis, B. K. (2009). On mapping the genetic code. J. Theor. Biol., 259, 860–862.

    Article  Google Scholar 

  • Delarue, M. (2008). An asymmetric underlying rule in the assignment of codons: possible clue to a quick early evolution of the genetic code via successive binary choices. RNA, 13, 161–169.

    Article  Google Scholar 

  • Eigen, M., & Schuster, P. (1978). The hypercycle: a principle of natural selection. Naturwissenschaften, 65, 341–369.

    Article  Google Scholar 

  • Eigen, M., & Winkler-Oswatitsch, R. (1981). Transfer-RNA: the early adaptor. Naturwissenschaften, 68, 217–228.

    Article  Google Scholar 

  • Eigen, M., & Winkler-Oswatitsch, R. (1981). Transfer-RNA, an early gene? Naturwissenschaften, 68, 282–292.

    Article  Google Scholar 

  • Eigen, M., Lindemann, B., Winkler-Oswatitsch, R., & Clarke, C. H. (1985). Pattern analysis of 5S rRNA. Proc. Natl. Acad. Sci. USA, 82, 2437–2441.

    Article  Google Scholar 

  • Eigen, M., Lindemann, B., Tietze, M., Winkler-Oswatitsch, R., Dress, A., et al. (1989). How old is the genetic code? Statistical geometry of tRNA provides an answer. Science, 244, 673–679.

    Article  Google Scholar 

  • Eriani, G., Delarue, M., Poch, O., Gangloff, J., & Moras, D. (1990). Partition of aminoacyl-tRNA synthetases into two classes based on mutually exclusive sets of conserved motifs. Nature, 347, 203–206.

    Article  Google Scholar 

  • Fox, G. E., & Naik, A. K. (2004). In L. R. de Pouplana (Ed.), The genetic code and the origin of life, (pp. 92–105). Landes Bioscience: New York.

    Chapter  Google Scholar 

  • Freeland, S. J., & Hurst, L. D. (1998). The genetic code is one in a million. J. Mol. Evol., 47, 238–248.

    Article  Google Scholar 

  • Friedman, S. M., & Weinstein, I. B. (1964). Lack of fidelity in the translation of ribopolynucleotides. Proc. Natl. Acad. Sci. USA, 52, 988–996.

    Article  Google Scholar 

  • García, J. A., Alvarez, S., Flores, A., Govezensky, T., Bobadilla, J. R., & José, M. V. (2004). Statistical analysis of the distribution of aminoacids in Borrelia burgdorferi genome under different genetic codes. Physica A, 342, 288–293.

    Article  Google Scholar 

  • Guimarãez, R. C., Moreira, C. H. C., & Farias, S. T. (2008b). Self-referential formation of the genetic system. In M. Barbieri (Ed.), The Netherlands series biosemiotics : Vol. 1. The codes of life—the rules of macroevolution (pp. 69–110). Dordrecht: Springer. ISBN 978-1-4020-6339-8.

    Chapter  Google Scholar 

  • Guimarãez, R. C., Moreira, C. H. C., & Farias, S. T. (2008a). A self-referential model for the formation of the genetic code. Theory Biosci., 127, 249–270.

    Article  Google Scholar 

  • Haig, D., & Hurst, L. D. (1991). A quantitative measure of error minimization in the genetic code. J. Mol. Evol., 33, 412–417.

    Article  Google Scholar 

  • Hornos, J. E. M., & Hornos, Y. M. M. (1993). Algebraic model for the evolution of the genetic code. Phys. Rev. Lett., 71, 4401–4404.

    Article  Google Scholar 

  • Jiménez-Montaño, M. A., de la Mora-Basañez, C. R., & Pöschel, T. (1996). The hypercube structure of the genetic code explains conservative and non-conservative amino acid substitutions in vivo and in vitro. Biosystems, 39, 117–125.

    Article  Google Scholar 

  • Johnson, D. B. F., & Wang, L. (2010). Imprints of the genetic code in the ribosome. Proc. Natl. Acad. Sci. USA, 55(6), 1546–1552.

    Google Scholar 

  • José, M. V., Morgado, E. R., & Govezensky, T. (2007). An extended RNA code and its relationship to the standard genetic code: an algebraic and geometrical approach. Bull. Math. Biol., 69, 215–243.

    Article  MathSciNet  MATH  Google Scholar 

  • José, M. V., Govezensky, T., García, J. A., & Bobadilla, J. R. (2009). On the evolution of the standard genetic code: vestiges of critical scale invariance from the RNA world in current prokaryote genomes. PLoS ONE, 4(2), e4340.

    Article  Google Scholar 

  • Joyce, G. F. (2002). The antiquity of RNA-based evolution. Nature, 418, 214–221.

    Article  Google Scholar 

  • Judson, O. P. (1999). The genetic code: what is it good for? An analysis of the effects of selection pressures on genetic codes. J. Mol. Evol., 49, 539–550.

    Article  Google Scholar 

  • Konecny, J., Schöniger, M., & Hofacker, L. (1995). Complementary coding to the primeval comma-less code. J. Theor. Biol., 173, 263–270.

    Article  Google Scholar 

  • Kramer, E. B., & Farabaugh, P. J. (2007). The frequency of translational misreading errors in E. coli is largely determined by tRNA competition. RNA, 13(1), 87–96.

    Article  Google Scholar 

  • Krause, E. F. (1986). Taxicab geometry. New York: Dover.

    Google Scholar 

  • Kumar, S. (1996). Patterns of nucleotide substitution in mitochondrial protein coding genes of vertebrates. Genetics, 143, 537–548.

    Google Scholar 

  • Lazcano, A. (2007). Prebiotic evolution and the origin of life: is a system-level understanding feasible? In I. Rigoutsos & G. Stephanopoulos (Eds.), Genomics : Vol. I. Systems Biology (pp. 57–78). New York: Oxford University Press.

    Google Scholar 

  • Lewin, B. (2000). Genes (Vol. VII). New York: Oxford University Press.

    Google Scholar 

  • Maeshiro, T., & Kimura, M. (1998). The role of robustness and changeability on the origin and evolution of genetic codes. Proc. Natl. Acad. Sci. USA, 95, 5088–5093.

    Article  Google Scholar 

  • Miller, S. L., Urey, H. C., & Oró, J. (1976). Origin of organic compounds on the primitive earth and in meteorites. J. Mol. Evol., 9, 59–72.

    Article  Google Scholar 

  • Nagel, G. M., & Doolittle, R. F. (1995). Phylogenetic, analyses of aminoacyl-tRNA synthetase families. J. Mol. Evol., 40, 487–498.

    Google Scholar 

  • Nicholas, H. B., & McClain, W. H. (1995). Searching tRNA sequences for relatedness to aminoacyl-tRNA synthetase families. J. Mol. Evol., 40, 482–486.

    Article  Google Scholar 

  • Novozhilov, A. S., Wolf, Y. I., & Koonin, E. (2007). Evolution of the genetic code: partial optimization of a random code for robustness to translation error in a rugged fitness landscape. BM Centr. Biol. Dir., 2, 1–24.

    Google Scholar 

  • Osawa, S., Jukes, T. H., Watanabe, K., & Muto, A. (1992). Recent evidence for evolution of the genetic code. Microbiol. Rev., 56, 229–264.

    Google Scholar 

  • Pohlmeyer, R. (2008). The genetic code revisited. J. Theor. Biol., 253, 623–624.

    Article  Google Scholar 

  • Ribas de Pouplana, L., & Schimmel, P. (2001). Aminoacyl-tRNA synthetases: potential markers of genetic code development. Trends Biochem. Sci., 26, 591–596.

    Article  Google Scholar 

  • Rodin, S. N., & Ohno, S. (1995). Two types of aminoacyl-tRNA synthetases could be originally encoded by complementary strands of the same nucleic acid. Orig. Life Evol. Biosph., 25, 565–589.

    Article  Google Scholar 

  • Rodin, S. N., & Rodin, A. S. (2008). On the origin of the genetic code: signatures of its primordial complementarity in tRNAs and aminoacyl-tRNAs synthetases. Heredity, 100, 341–355.

    Article  Google Scholar 

  • Sánchez, R., Morgado, E. R., & Grau, R. (2005). A genetic code boolean structure, I: the meaning of Boolean deductions. Bull. Math. Biol., 67, 1–14.

    Article  MathSciNet  Google Scholar 

  • Sánchez, R., Grau, R., & Morgado, E. (2006). A novel Lie algebra of the genetic code over the Galois field of four DNA bases. Math. Biosci., 202, 156–174.

    Article  MathSciNet  MATH  Google Scholar 

  • Sella, G., & Ardell, D. H. (2006). The coevolution of genes and genetic codes: Crick’s frozen accident revisited. J. Mol. Evol., 63(3), 297–313.

    Article  Google Scholar 

  • Sethuraman, B. A. (1997). Rings, fields, and vector spaces. New York: Springer.

    MATH  Google Scholar 

  • Shepherd, J. C. W. (1981). Periodic correlations in DNA sequences and evidence suggesting their evolutionary origin in a comma-less genetic code. J. Mol. Evol., 17, 94–102.

    Article  Google Scholar 

  • Trifonov, E. N. (2000). Consensus temporal order of amino acids and evolution of the triplet code. Gene, 261, 139–151.

    Article  Google Scholar 

  • Vetsigian, K., Woese, C., & Goldenfeld, N. (2006). Collective evolution and the genetic code. Proc. Natl. Acad. Sci. USA, 103(28), 10696–10701.

    Article  Google Scholar 

  • Woese, C. R. (1965). On the evolution of the genetic code. Proc. Natl. Acad. Sci. USA, 55(6), 1546–1552.

    Article  Google Scholar 

  • Woese, C. (1968). The genetic code. New York: Harper & Row.

    Google Scholar 

  • Woese, C. R., Dugre, D. H., Saxinger, W. C., & Dugre, S. A. (1966). The molecular basis for the genetic code. Proc. Natl. Acad. Sci. USA, 55, 966–974.

    Article  Google Scholar 

  • Woese, C. R., Olsen, G. J., Ibba, M., & Söll, D. (2000). Aminoacyl-tRNA synthetases, the genetic code and the evolutionary process. Microbiol. Mol. Biol. Rev., 64, 202–236.

    Article  Google Scholar 

  • Wong, J. T. F. (1976). The evolution of a universal genetic code. Proc. Natl. Acad. Sci. USA, 73, 2336–2340.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco V. José.

Rights and permissions

Reprints and permissions

About this article

Cite this article

José, M.V., Morgado, E.R. & Govezensky, T. Genetic Hotels for the Standard Genetic Code: Evolutionary Analysis Based upon Novel Three-Dimensional Algebraic Models. Bull Math Biol 73, 1443–1476 (2011). https://doi.org/10.1007/s11538-010-9571-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9571-y

Keywords

Navigation