Skip to main content
Log in

Adding Adhesion to a Chemical Signaling Model for Somite Formation

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Somites are condensations of mesodermal cells that form along the two sides of the neural tube during early vertebrate development. They are one of the first instances of a periodic pattern, and give rise to repeated structures such as the vertebrae. A number of theories for the mechanisms underpinning somite formation have been proposed. For example, in the “clock and wavefront” model (Cooke and Zeeman in J. Theor. Biol. 58:455–476, 1976), a cellular oscillator coupled to a determination wave progressing along the anterior-posterior axis serves to group cells into a presumptive somite. More recently, a chemical signaling model has been developed and analyzed by Maini and coworkers (Collier et al. in J. Theor. Biol. 207:305–316, 2000; Schnell et al. in C. R. Biol. 325:179–189, 2002; McInerney et al. in Math. Med. Biol. 21:85–113, 2004), with equations for two chemical regulators with entrained dynamics. One of the chemicals is identified as a somitic factor, which is assumed to translate into a pattern of cellular aggregations via its effect on cell–cell adhesion. Here, the authors propose an extension to this model that includes an explicit equation for an adhesive cell population. They represent cell adhesion via an integral over the sensing region of the cell, based on a model developed previously for adhesion driven cell sorting (Armstrong et al. in J. Theor. Biol. 243:98–113, 2006). The expanded model is able to reproduce the observed pattern of cellular aggregates, but only under certain parameter restrictions. This provides a fuller understanding of the conditions required for the chemical model to be applicable. Moreover, a further extension of the model to include separate subpopulations of cells is able to reproduce the observed differentiation of the somite into separate anterior and posterior halves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Armstrong, N.J., Painter, K.J., Sherratt, J.A., 2006. A continuum approach to modelling cell–cell adhesion. J. Theor. Biol. 243, 98–113.

    Article  MathSciNet  Google Scholar 

  • Bagnall, K.M., Higgins, S.J., Sanders, E.J., 1989. The contribution made by cells from a single somite to tissues within a body segment and assessment of their integration with similar cells from adjacent segments. Development 107, 931–943.

    Google Scholar 

  • Baker, R.E., Schnell, S., Maini, P.K., 2006a. A clock and wavefront mechanism for somite formation. Dev. Biol. 293, 116–126.

    Article  Google Scholar 

  • Baker, R.E., Schnell, S., Maini, P.K., 2006b. A mathematical investigation of a clock and wavefront model for somitogenesis. J. Math. Biol. 52, 458–482.

    Article  MATH  MathSciNet  Google Scholar 

  • Baker, R.E., Schnell, S., Maini, P.K., 2008. Mathematical models for somite formation. Curr. Top. Dev. Biol. 81, 183–203.

    Article  Google Scholar 

  • Bothe, I., Ahmed, M.U., Winterbottom, F.L., von Scheven, G., Dietrich, S., 2007. Extrinsic versus intrinsic cues in avian paraxial mesoderm patterning and differentiation. Dev. Dyn. 236, 2397–2409.

    Article  Google Scholar 

  • Cheney, C.M., Lash, J.W., 1984. An increase in cell–cell adhesion in the chick segmental plate results in a meristic pattern. J. Embryol. Exp. Morphol. 79, 1–10.

    Google Scholar 

  • Collier, J.R., McInerney, D., Schnell, S., Maini, P.K., Gavaghan, D.J., Houston, P., Stern, C.D., 2000. A cell cycle model for somitogenesis: Mathematical formulation and numerical simulation. J. Theor. Biol. 207, 305–316.

    Article  Google Scholar 

  • Cooke, J.R., Zeeman, E.C., 1976. A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J. Theor. Biol. 58, 455–476.

    Article  Google Scholar 

  • Dale, K.J., Pourquié, O., 2000. A clock-work somite. Bioessays 22, 72–83.

    Article  Google Scholar 

  • Duband, J.L., Dufour, S., Hatta, K., Takeichi, M., Edelman, G.M., Thiery, J.P., 1987. Adhesion molecules during somitogenesis in the avian embryo. J. Cell. Biol. 104, 1361–1374.

    Article  Google Scholar 

  • Dubrulle, J., McGrew, M.J., Pourquié, O., 2001. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 106, 219–232.

    Article  Google Scholar 

  • Dubrulle, J., Pourquié, O., 2004a. Coupling segmentation to axis formation. Development 131, 5783–5793.

    Article  Google Scholar 

  • Dubrulle, J., Pourquié, O., 2004b. fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo. Nature 427(6973), 419–422.

    Article  Google Scholar 

  • Foty, R.A., Steinberg, M.S., 2004. Cadherin-mediated cell–cell adhesion and tissue segregation in relation to malignancy. Int. J. Dev. Biol. 48, 397–409.

    Article  Google Scholar 

  • Foty, R.A., Steinberg, M.S., 2005. The differential adhesion hypothesis: A direct evaluation. Dev. Biol. 278, 255–263.

    Article  Google Scholar 

  • Gerisch, A., 2008. On the approximation and efficient evaluation of integral terms in PDE models of cell adhesion. Submitted.

  • Gerisch, A., Chaplain, M., 2008. Mathematical modelling of cancer cell invasion of tissue: local and nonlocal models and the effect of adhesion. J. Theor. Biol. 250, 684–704.

    Article  Google Scholar 

  • Glazier, J.A., Zhang, Y., Swat, M., Zaitlen, B., Schnell, S., 2008. Coordinated action of N-CAM, N-cadherin, EphA4, and ephrinB2 translates genetic prepatterns into structure during somitogenesis in chick. Curr. Top. Dev. Biol. 81, 205–247.

    Article  Google Scholar 

  • Grima, R., Schnell, S., 2007. Can tissue surface tension drive somite formation? Dev. Biol. 307, 248–257.

    Article  Google Scholar 

  • Hatta, K., Takagi, S., Fujisawa, H., Takeichi, M., 1987. Spatial and temporal expression pattern of N-cadherin cell adhesion molecules correlated with morphogenetic processes of chicken embryos. Dev. Biol. 120, 215–227.

    Article  Google Scholar 

  • Hillen, T., Painter, K.J., 2001. A parabolic model with bounded chemotaxis—prevention of overcrowding. Adv. Appl. Math. 26, 280–301.

    Article  MATH  MathSciNet  Google Scholar 

  • Horikawa, K., Radice, G., Takeichi, M., Chisaka, O., 1999. Adhesive subdivisions intrinsic to the epithelial somites. Dev. Biol. 215, 182–189.

    Article  Google Scholar 

  • Kimura, Y., Matsunami, H., Inoue, T., Shimamura, K., Uchida, N., Ueno, T., Miyazaki, T., Takeichi, M., 1995. Cadherin-11 expressed in association with mesenchymal morphogenesis in the head, somite, and limb bud of early mouse embryos. Dev. Biol. 169, 347–358.

    Article  Google Scholar 

  • Kulesa, P.M., Schnell, S., Rudloff, S., Baker, R.E., Maini, P.K., 2007. From segment to somite: segmentation to epithelialization analyzed within quantitative frameworks. Dev. Dyn. 236, 1392–1402.

    Article  Google Scholar 

  • Lash, J.W., Linask, K.K., Yamada, K.M., 1987. Synthetic peptides that mimic the adhesive recognition signal of fibronectin: differential effects on cell–cell and cell-substratum adhesion in embryonic chick cells. Dev. Biol. 123, 411–420.

    Article  Google Scholar 

  • Lewis, J., Ozbudak, E.M., 2007. Deciphering the somite segmentation clock: beyond mutants and morphants. Dev. Dyn. 236, 1410–1415.

    Article  Google Scholar 

  • Linask, K.K., Ludwig, C., Han, M.D., Liu, X., Radice, G.L., Knudsen, K.A., 1998. N-cadherin/catenin-mediated morphoregulation of somite formation. Dev. Biol. 202, 85–102.

    Article  Google Scholar 

  • McGrew, M.J., Dale, K., Fraboulet, S., Pourquié, O., 1998. The lunatic Fringe gene is a target of the molecular clock linked to somite segmentation in avian embryos. Curr. Biol. 8, 979–982.

    Article  Google Scholar 

  • McInerney, D., Schnell, S., Baker, R.E., Maini, P.K., 2004. A mathematical formulation for the cell-cycle model in somitogenesis: Analysis, parameter constraints and numerical solutions. Math. Med. Biol. 21, 85–113.

    Article  MATH  Google Scholar 

  • Meinhardt, H., 1986. Models of segmentation. In: Somites in Developing Embryos, pp. 179–189. Plenum, New York.

    Google Scholar 

  • Ostrovsky, D., Cheney, C.M., Seitz, A.W., Lash, J.W., 1983. Fibronectin distribution during somitogenesis in the chick embryo. Cell. Differ. 13, 217–223.

    Article  Google Scholar 

  • Palmeirim, I., Henrique, D., Ish-Horowicz, D., Pourquié, O., 1997. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91, 639–648.

    Article  Google Scholar 

  • Pourquié, O., 2001. Vertebrate somitogenesis. Ann. Rev. Cell. Dev. Biol. 17, 311–350.

    Article  Google Scholar 

  • Primmett, D., Norris, W., Carlson, G., Keynes, R., Stern, C., 1989. Periodic segmental anomalies induced by heat shock in the chick embryo are associated with the cell cycle. Development 105, 119–130.

    Google Scholar 

  • Primmett, D.R., Stern, C.D., Keynes, R.J., 1988. Heat shock causes repeated segmental anomalies in the chick embryo. Development 104, 331–339.

    Google Scholar 

  • Saga, Y., Takeda, H., 2001. The making of the somite: molecular events in vertebrate segmentation. Nat. Rev. Genet. 2, 835–845.

    Article  Google Scholar 

  • Schnell, S., Maini, P.K., McInerney, D., Gavaghan, D.J., Houston, P., 2002. Models for pattern formation in somitogenesis: A marriage of cellular and molecular biology. C. R. Biol. 325, 179–189.

    Article  Google Scholar 

  • Steinberg, M.S., 1962. On the mechanism of tissue reconstruction by dissociated cells, III. Free energy relations and the reorganization of fused, heteronomic tissue fragments. PNAS 48, 1769–1776.

    Article  Google Scholar 

  • Stern, C.D., Keynes, R.J., 1987. Interactions between somite cells: the formation and maintenance of segment boundaries in the chick embryo. Development 99, 261–272.

    Google Scholar 

  • Stern, C.D., Fraser, S.E., Keynes, R.J., Primmett, D.R.N., 1988. A cell lineage analysis of segmentation in the chick embryo. Development 104S, 231–244.

    Google Scholar 

  • Takeichi, M., 1988. The cadherins: cell–cell adhesion molecules controlling animal morphogenesis. Development 102, 639–655.

    Google Scholar 

  • Weiner, R., Schmitt, B., Podhaisky, H., 1997. Rowmap—a row-code with Krylov techniques for large stiff odes. Appl. Num. Math. 25, 303–319.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Painter.

Additional information

N.J. Armstrong was supported by a Doctoral Training Account Studentship from EPSRC. K.J. Painter and J.A. Sherratt were supported in part by Integrative Cancer Biology Program Grant CA113004 from the US National Institute of Health and in part by BBSRC grant BB/D019621/1 for the Centre for Systems Biology at Edinburgh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armstrong, N.J., Painter, K.J. & Sherratt, J.A. Adding Adhesion to a Chemical Signaling Model for Somite Formation. Bull. Math. Biol. 71, 1–24 (2009). https://doi.org/10.1007/s11538-008-9350-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9350-1

Keywords

Navigation