Skip to main content
Log in

Sensitivity Analysis of Reactive Ecological Dynamics

Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Ecological systems with asymptotically stable equilibria may exhibit significant transient dynamics following perturbations. In some cases, these transient dynamics include the possibility of excursions away from the equilibrium before the eventual return; systems that exhibit such amplification of perturbations are called reactive. Reactivity is a common property of ecological systems, and the amplification can be large and long-lasting. The transient response of a reactive ecosystem depends on the parameters of the underlying model. To investigate this dependence, we develop sensitivity analyses for indices of transient dynamics (reactivity, the amplification envelope, and the optimal perturbation) in both continuous- and discrete-time models written in matrix form. The sensitivity calculations require expressions, some of them new, for the derivatives of equilibria, eigenvalues, singular values, and singular vectors, obtained using matrix calculus. Sensitivity analysis provides a quantitative framework for investigating the mechanisms leading to transient growth. We apply the methodology to a predator-prey model and a size-structured food web model. The results suggest predator-driven and prey-driven mechanisms for transient amplification resulting from multispecies interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Armstrong, R.A., 1994. Grazing limitation and nutrient limitation in marine ecosystems: Steady-state solutions of an ecosystem model with multiple food chains. Limnol. Oceanogr. 39, 597–608.

    Article  Google Scholar 

  • Caswell, H., 2001. Matrix Population Models: Construction, Analysis, and Interpretation, 2nd edn. Sinauer Associates, Sunderland.

    Google Scholar 

  • Caswell, H., 2007. Sensitivity analysis of transient population dynamics. Ecol. Lett. 10, 1–15.

    Article  Google Scholar 

  • Caswell, H., 2008. Perturbation analysis of nonlinear matrix population models. Demogr. Res. 18, 49–116.

    Google Scholar 

  • Caswell, H., Neubert, M.G., 2005. Reactivity and transient dynamics of discrete-time ecological systems. J. Differ. Equ. Appl. 2, 295–310.

    Article  MathSciNet  Google Scholar 

  • Chen, X., Cohen, J.E., 2001. Transient dynamics and food-web complexity in the Lotka-Volterra cascade model. Proc. R. Soc. Lond. B 268, 1–10.

    Article  Google Scholar 

  • Coddington, E.A., Levinson, N., 1955. Theory of Ordinary Differential Equations. McGraw–Hill, New York.

    MATH  Google Scholar 

  • Farrell, B.F., Ioannou, P.J., 1996. Generalized stability theory. Part I: Autonomous operators. J. Atmos. Sci. 53, 2025–2040.

    Article  MathSciNet  Google Scholar 

  • Gantmacher, F.R., 1959. The Theory of Matrices, vol. 1. Chelsea, New York.

    MATH  Google Scholar 

  • Hastings, A., 2004. Transients: the key to long-term ecological understanding? Trends Ecol. Evol. 19, 39–45.

    Article  Google Scholar 

  • Henderson, H.V., Searle, S.R., 1981. The vec-permutation matrix, the vec operator and Kronecker products: a review. Linear Multilinear Algebra 9, 271–288.

    Article  MATH  MathSciNet  Google Scholar 

  • Ives, A.R., Carpenter, S.R., 2007. Stability and diversity of ecosystems. Science 317, 58–62.

    Article  Google Scholar 

  • Magnus, J.R., Neudecker, H., 1985. Matrix differential calculus with applications to simple, Hadamard, and Kronecker products. J. Math. Psychol. 29, 474–492.

    Article  MATH  MathSciNet  Google Scholar 

  • Magnus, J.R., Neudecker, H., 1988. Matrix Differential Calculus with Applications in Statistics and Econometrics. Wiley, New York.

    MATH  Google Scholar 

  • Marvier, M., Kareiva, P., Neubert, M.G., 2004. Habitat destruction, fragmentation, and disturbance promote invasion by habitat generalists in a multispecies metapopulation. Risk Anal. 24, 869–878.

    Article  Google Scholar 

  • May, R.M., 1973. Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton.

    Google Scholar 

  • Nel, D.G., 1980. On matrix differentiation in statistics. S. Afr. Stat. J. 14, 137–193.

    MATH  MathSciNet  Google Scholar 

  • Neubert, M.G., Caswell, H., 1997. Alternatives to resilience for measuring the responses of ecological systems to perturbations. Ecology 78, 653–665.

    Article  Google Scholar 

  • Neubert, M.G., Caswell, H., Murray, J.D., 2002. Transient dynamics and pattern formation: reactivity is necessary for Turing instabilities. Math. Biosci. 175, 1–11.

    Article  MATH  MathSciNet  Google Scholar 

  • Neubert, M.G., Klanjscek, T., Caswell, H., 2004. Reactivity and transient dynamics of predator-prey and food web models. Ecol. Model. 179, 29–38.

    Article  Google Scholar 

  • Pimm, S.L., 1984. The complexity and stability of ecosystems. Nature 307, 321–326.

    Article  Google Scholar 

  • Rosenzweig, M.L., MacArthur, R.H., 1963. Graphical representation and stability conditions of predator-prey interactions. Am. Nat. 97, 209–223.

    Article  Google Scholar 

  • Roth, W.E., 1934. On direct product matrices. Bull. Am. Math. Soc. 40, 461–468.

    Article  Google Scholar 

  • Stewart, G.W., 1991. Perturbation theory for the singular value decomposition. In: Vaccaro, R.J. (Ed.), SVD and Signal Processing, II: Algorithms, Analysis and Applications, pp. 99–109. Elsevier, Amsterdam.

    Google Scholar 

  • Trefethen, L.N., 1992. Pseudospectra of matrices. In: Griffiths, D.F., Watson, G.A. (Eds.), Numerical Analysis 1991, Proc. 14th Dundee Conf., pp. 234–266. Longman Scientific and Technical, Essex.

    Google Scholar 

  • Trefethen, L.N., Embree, M., 2005. Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton.

    MATH  Google Scholar 

  • Trefethen, L.N., Trefethen, A.E., Reddy, S.C., Driscoll, T.A., 1993. Hydrodynamic stability without eigenvalues. Science 261, 577–583.

    Article  MathSciNet  Google Scholar 

  • Verdy, A., (2008). Dynamics of marine zooplankton: social behavior, ecological interactions, and physically-induced variability. PhD Thesis, MIT-WHOI Joint Program in Oceanography.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariane Verdy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verdy, A., Caswell, H. Sensitivity Analysis of Reactive Ecological Dynamics. Bull. Math. Biol. 70, 1634–1659 (2008). https://doi.org/10.1007/s11538-008-9312-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9312-7

Keywords

Navigation