Skip to main content
Log in

Modeling Group Formation and Activity Patterns in Self-Organizing Collectives of Individuals

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We construct and analyze a nonlocal continuum model for group formation with application to self-organizing collectives of animals in homogeneous environments. The model consists of a hyperbolic system of conservation laws, describing individual movement as a correlated random walk. The turning rates depend on three types of social forces: attraction toward other organisms, repulsion from them, and a tendency to align with neighbors. Linear analysis is used to study the role of the social interaction forces and their ranges in group formation. We demonstrate that the model can generate a wide range of patterns, including stationary pulses, traveling pulses, traveling trains, and a new type of solution that we call zigzag pulses. Moreover, numerical simulations suggest that all three social forces are required to account for the complex patterns observed in biological systems. We then use the model to study the transitions between daily animal activities that can be described by these different patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Beecham, J.A., Farnsworth, K.D., 1999. Animal group forces resulting from predator avoidance and competition minimization. J. Theor. Biol. 198, 533–548.

    Article  Google Scholar 

  • Breder, C.M., 1954. Equations descriptive of fish schools and other animal aggregations. Ecology 35 361–370.

    Google Scholar 

  • Bressloff, P.C., 2004. Euclidean shift-twist symmetry in population models of self-aligning objects. SIAM J. Appl. Math. 64, 1668–1690.

    Article  MATH  MathSciNet  Google Scholar 

  • Buchanan, J.B., Schick, C.T., Brennan, L.A., Herman, S.G., 1988. Merlin predation on wintering dunlins: Hunting success and dunlin escape tactics. Wilson Bull. 100, 108–118.

    Google Scholar 

  • Bumann, D., Krause, J., 1993. Front individuals lead in shoals of three-spined sticklebacks (Gasterosteus aculeatus) and juvenile roach (Rutilus rutilus). Behaviour 125, 189–198.

    Google Scholar 

  • Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.R., 2002. Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218, 1–11.

    Article  MathSciNet  Google Scholar 

  • Davis, M., 1980. The coordinated aerobatics of dunlin flocks. Anim. Behav. 28, 668–673.

    Article  Google Scholar 

  • Edelstein-Keshet, L., Watmough, J., Grünbaum, D., 1998. Do travelling band solutions describe cohesive swarms? An investigation for migratory locusts. J. Math. Biol. 36(6), 515–549.

    Article  MATH  MathSciNet  Google Scholar 

  • Flierl, G., Grünbaum, D., Levin, S., Olson, D., 1999. From individuals to aggregations: The interplay between behavior and physics. J. Theor. Biol. 196, 397–454.

    Article  Google Scholar 

  • Gazi, V., Passino, K.M., 2002. Stability analysis of swarms. In: Proc. Am. Control Conf. Anchorage, AK, pp. 8–10.

  • Grünbaum, D., 1998. Schooling as a strategy for taxis in a noisy environment. Evol. Ecol. 12, 503–522.

    Article  Google Scholar 

  • Gueron, S., Levin, S.A., Rubenstein, D.I., 1996. The dynamics of herds: From individuals to aggregations. J. Theor. Biol. 182, 85–98.

    Article  Google Scholar 

  • Helfman, G., 1993. Fish behaviour by day, night and twilight. In: Pitcher, T. (Ed.), Behaviour of Teleost Fishes. Chapman & Hall, London, pp. 479–512.

    Google Scholar 

  • Humphries, D.A., Driver, P.M., 1970. Protean defence by prey animals. Oecologia (Berl.) 5, 285–302.

    Article  Google Scholar 

  • Huth, A., Wissel, C., 1994. The simulation of fish schools in comparison with experimental data. Ecol. Model. 75/76, 135–145.

    Article  Google Scholar 

  • Kac, M., 1974. A stochastic model related to the telegrapher's equation. Rocky Mt. J. Math. 4, 497–509.

    Article  MATH  Google Scholar 

  • Kerner, B.S., Konhäuser, P., 1994. Structure and parameters of clusters in traffic flow. Phys. Rev. E 50, 54–83.

    Article  Google Scholar 

  • Kube, C.R., Zhang, H., 1993. Collective robotics: From social insects to robots. Adapt. Behav. 2, 189–218.

    Article  Google Scholar 

  • LeVeque, R., 1992. Numerical Methods for Conservation Laws. Birkhäuser, Basel, Switzerland.

    MATH  Google Scholar 

  • Lutscher, F., 2002. Modeling alignment and movement of animals and cells. J. Math. Biol. 45, 234–260.

    Article  MATH  MathSciNet  Google Scholar 

  • Lutscher, F., Stevens, A., 2002. Emerging patterns in a hyperbolic model for locally interacting cell systems. J. Nonlinear Sci. 12, 619–640.

    Article  MATH  MathSciNet  Google Scholar 

  • Marler, P., 1967. Animal communication signals. Science 157, 769–774.

    Article  Google Scholar 

  • Mogilner, A., Edelstein-Keshet, L., 1996. Spatio-angular order in populations of self-aligning objects: Formation of oriented patches. Physica D 89, 346–367.

    Article  MATH  MathSciNet  Google Scholar 

  • Mogilner, A., Edelstein-Keshet, L., 1999. A non-local model for a swarm. J. Math. Biol. 38, 534–570.

    Article  MATH  MathSciNet  Google Scholar 

  • Mogilner, A., Edelstein-Keshet, L., Bent, L., Spiros, A., 2003. Mutual interactions, potentials, and individual distance in a social aggregation. J. Math. Biol. 47, 353–389.

    Article  MATH  MathSciNet  Google Scholar 

  • Okubo, A., 1986. Dynamical aspects of animal grouping: Swarms, school, flocks and herds In: Kotani, M. (Ed.). Adv. Biophys. 22, 1–94.

    Article  Google Scholar 

  • Okubo, A., Grünbaum, D., Edelstein-Keshet, L., 2001. The dynamics of animal grouping. In: Okubo, A., Levin, S. (Eds.), Diffusion and Ecological Problems: Modern Perspectives. Springer, New York, pp. 197–237.

    Google Scholar 

  • Othmer, H.G., Dunbar, S.R., Alt, W., 1988. Models of dispersal in biological systems. J. Math. Biol. 26, 263–298.

    Article  MATH  MathSciNet  Google Scholar 

  • Parrish, J.K., 1999. Using behavior and ecology to exploit schooling fishes. Environ. Biol. Fish. 55, 157–181.

    Article  Google Scholar 

  • Partan, S.R., Marler, P., 2005. Issues in the classification of multimodal communication signals. Am. Nat. 166, 231–245.

    Article  Google Scholar 

  • Partridge, B.L., Pitcher, T., Cullen, J.M., Wilson, J., 1980. The three-dimensional structure of fish schools. Behav. Ecol. Sociobiol. 6, 277–288.

    Article  Google Scholar 

  • Pfistner, B., 1990. A one dimensional model for the swarming behavior of Myxobakteria. In: Alt, W., Hoffmann, G. (Eds.), Biological Motion, Lecture Notes on Biomathematics, vol. 89. Springer, New York, pp. 556–563.

    Google Scholar 

  • Pfistner, B., 1995. Simulation of the dynamics of myxobacteria swarms based on a one-dimensional interaction model. J. Biol. Syst. 3, 579–588.

    Article  Google Scholar 

  • Pomeroy, H., Heppner, F., 1992. Structure of turning in airborne rock dove (Columba Livia) flocks. The Auk 109, 256–267.

    Google Scholar 

  • Potts, W.K., 1984. The chorus-line hypothesis of manoeuvre coordination in avian flocks. Nature 309, 344–345.

    Article  Google Scholar 

  • Radakov, D.V., 1973. Schooling in the Ecology of Fish. Wiley, New York.

    Google Scholar 

  • Reuter, H., Breckling, B., 1994. Self organization of fish schools: An object-oriented model. Ecol. Model. 75/76, 147–159.

    Article  Google Scholar 

  • Reynolds, C.W., 1987. Flocks, herds and schools: A distributed behavioral model. Comput. Graph. 21, 25–34.

    Article  Google Scholar 

  • Robbins, T., 2003. Seed dispersal and biological invasion: A mathematical analysis. PhD thesis, University of Utah.

  • Segel, L.A., 1977. A theoretical study of receptor mechanisms in bacterial chemotaxis. SIAM J. Appl. Math. 32, 653–665.

    Article  MATH  Google Scholar 

  • Simpson, S.J., McCaffery, A.R., Hägele, B.F., 1999. A behavioural analysis of phase change in the desert locust. Biol. Rev. 74, 461–480.

    Article  Google Scholar 

  • Topaz, C.M., Bertozzi, A.L., 2004. Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J. Appl. Math. 65, 152–174.

    Article  MATH  MathSciNet  Google Scholar 

  • Topaz, C.M., Bertozzi, A.L., Lewis, M.A., 2005. A nonlocal continuum model for biological aggregation. Bull. Math. Biol. 68, 1601–1623.

    Google Scholar 

  • Uvarov, B., 1966. Grasshoppers and Locusts. Centre for Overseas Pest Research, London.

    Google Scholar 

  • Vabø, R., Nøttestad, L., 1997. An individual based model of fish school reactions: Predicting antipredator behaviour as observed in nature. Fish. Oceanogr. 6, 155–171.

    Article  Google Scholar 

  • Vicsek, T., Czirok, A., Farkas, I.J., Helbing, D., 1999. Application of statistical mechanics to collective motion in biology. Physica A 274, 182–189.

    Article  Google Scholar 

  • Warburton, K., Lazarus, J., 1991. Tendency-distance models of social cohesion in animal groups. J. Theor. Biol. 150, 473–488.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Eftimie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eftimie, R., de Vries, G., Lewis, M.A. et al. Modeling Group Formation and Activity Patterns in Self-Organizing Collectives of Individuals. Bull. Math. Biol. 69, 1537–1565 (2007). https://doi.org/10.1007/s11538-006-9175-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9175-8

Keywords

Navigation