Skip to main content
Log in

Towards a Lie theory of locally convex groups

  • Published:
Japanese Journal of Mathematics Aims and scope

Abstract.

In this survey, we report on the state of the art of some of the fundamental problems in the Lie theory of Lie groups modeled on locally convex spaces, such as integrability of Lie algebras, integrability of Lie subalgebras to Lie subgroups, and integrability of Lie algebra extensions to Lie group extensions. We further describe how regularity or local exponentiality of a Lie group can be used to obtain quite satisfactory answers to some of the fundamental problems. These results are illustrated by specialization to some specific classes of Lie groups, such as direct limit groups, linear Lie groups, groups of smooth maps and groups of diffeomorphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • A. Abouqateb and K.-H. Neeb, Integration of locally exponential Lie algebras of vector fields, submitted.

  • M. Adams, T. Ratiu and R. Schmid, The Lie group structure of diffeomorphism groups and invertible Fourier integral operators, with applications, In: Infinite-dimensional groups with applications, Berkeley, Calif., 1984, Math. Sci. Res. Inst. Publ., 4, Springer-Verlag, 1985, pp. 1–69.

  • M. Adams, T. Ratiu and R. Schmid, A Lie group structure for pseudodifferential operators, Math. Ann., 273 (1986), 529–551.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Adams, T. Ratiu and R. Schmid, A Lie group structure for Fourier integral operators, Math. Ann., 276 (1986), 19–41.

    Article  MATH  MathSciNet  Google Scholar 

  • I. Ado, Über die Darstellung von Lieschen Gruppen durch lineare Substitutionen, Bull. Soc. Phys. Math. Kazan (3), 7 (1936), 3–43.

    MATH  Google Scholar 

  • S. A. Albeverio, R. J. Høegh-Krohn, J. A. Marion, D. H. Testard and B. S. Torrésani, Noncommutative distributions. Unitary representation of Gauge Groups and Algebras, Monogr. Textbooks Pure Appl. Math., 175, Marcel Dekker, Inc., New York, 1993.

  • G. R. Allan, A spectral theory for locally convex algebras, Proc. London Math. Soc. (3), 15 (1965), 399–421.

    MATH  MathSciNet  Google Scholar 

  • B. N. Allison, S. Azam, S. Berman, Y. Gao and A. Pianzola, Extended Affine Lie Algebras and Their Root Systems, Mem. Amer. Math. Soc., 603, Providence, R.I., 1997.

  • B. Allison, G. Benkart and Y. Gao, Central extensions of Lie algebras graded by finite-root systems, Math. Ann., 316 (2000), 499–527.

    Article  MATH  MathSciNet  Google Scholar 

  • I. Amemiya, Lie algebra of vector fields and complex structure, J. Math. Soc. Japan, 27 (1975), 545–549.

    Article  MATH  MathSciNet  Google Scholar 

  • V. I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier, 16 (1966), 319–361.

    MATH  Google Scholar 

  • V. I. Arnold and B. A. Khesin, Topological Methods in Hydrodynamics, Springer-Verlag, 1998.

  • J. A. de Azcarraga and J. M. Izquierdo, Lie Groups, Lie Algebras, Cohomology and some Applications in Physics, Cambridge Monogr. Math. Phys., 1995.

  • H. F. Baker, On the exponential theorem for a simply transitive continuous group, and the calculation of the finite equations from the constants of structure, J. London Math. Soc., 34 (1901), 91–127.

    MATH  Google Scholar 

  • H. F. Baker, On the calculation of the finite equations of a continuous group, Lond. M. S. Proc., 35 (1903), 332–333.

    MATH  Google Scholar 

  • A. Banyaga, The Structure of Classical Diffeomorphism Groups, Kluwer Academic Publishers, 1997.

  • A. Bastiani, Applications différentiables et variétés différentiables de dimension infinie, J. Anal. Math., 13 (1964), 1–114.

    MATH  MathSciNet  Google Scholar 

  • E. J. Beggs, The de Rham complex on infinite dimensional manifolds, Quart. J. Math. Oxford (2), 38 (1987), 131–154.

    MATH  MathSciNet  Google Scholar 

  • D. Beltiţă, Asymptotic products and enlargibility of Banach–Lie algebras, J. Lie Theory, 14 (2004), 215–226.

    MathSciNet  MATH  Google Scholar 

  • D. Beltiţă, Smooth Homogeneous Structures in Operator Theory, Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math., 2006.

  • D. Beltiţă and K.-H. Neeb, Finite-dimensional Lie subalgebras of algebras with continuous inversion, preprint, 2006.

  • D. Beltiţă and T. S. Ratiu, Geometric representation theory for unitary groups of operator algebras, Adv. Math., to appear.

  • D. Beltiţă and T. S. Ratiu, Symplectic leaves in real Banach Lie–Poisson spaces, Geom. Funct. Anal., 15 (2005), 753–779.

    Article  MathSciNet  MATH  Google Scholar 

  • W. Bertram and K.-H. Neeb, Projective completions of Jordan pairs, Part I. The generalized projective geometry of a Lie algebra, J. Algebra, 277 (2004), 474–519.

    Article  MATH  MathSciNet  Google Scholar 

  • W. Bertram and K.-H. Neeb, Projective completions of Jordan pairs, Part II, Geom. Dedicata, 112 (2005), 75–115.

    Article  MathSciNet  Google Scholar 

  • W. Bertram, H. Glöckner and K.-H. Neeb, Differential Calculus over General Base Fields and Rings, Expo. Math., 22 (2004), 213–282.

    MATH  MathSciNet  Google Scholar 

  • Y. Billig, Abelian extensions of the group of diffeomorphisms of a torus, Lett. Math. Phys., 64 (2003), 155–169.

    Article  MATH  MathSciNet  Google Scholar 

  • Y. Billig and A. Pianzola, Free Kac-Moody groups and their Lie algebras, Algebr. Represent. Theory, 5 (2002), 115–136.

    Article  MATH  MathSciNet  Google Scholar 

  • G. Birkhoff, Continuous groups and linear spaces, Mat. Sb., 1 (1936), 635–642.

    MATH  Google Scholar 

  • G. Birkhoff, Analytic groups, Trans. Amer. Math. Soc., 43 (1938), 61–101.

    Article  MATH  MathSciNet  Google Scholar 

  • B. Blackadar, K-theory for Operator Algebras, 2nd edition, Cambridge Univ. Press, 1998.

  • J. Bochnak and J. Siciak, Analytic functions in topological vector spaces, Studia Math., 39 (1971), 77–112.

    MATH  MathSciNet  Google Scholar 

  • S. Bochner and D. Montgomery, Groups of differentiable and real or complex analytic transformations, Ann. of Math. (2), 46 (1945), 685–694.

    Article  MATH  MathSciNet  Google Scholar 

  • F. F. Bonsall and J. Duncan, Complete Normed Algebras, Ergeb. Math. Grenzgeb., 80, Springer-Verlag, 1973.

  • H. Boseck, G. Czichowski and K.-P. Rudolph, Analysis on Topological Groups – General Lie Theory, Teubner, Leipzig, 1981.

  • J.-B. Bost, Principe d’Oka, K-theorie et systèmes dynamiques non-commutatifs, Invent. Math., 101 (1990), 261–333.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Bott, On the characteristic classes of groups of diffeomorphisms, Enseign. Math. (2), 23 (1977), 209–220.

    MATH  MathSciNet  Google Scholar 

  • N. Bourbaki, Topological Vector Spaces, Chaps. 1–5, Springer-Verlag, 1987.

  • N. Bourbaki, Lie Groups and Lie Algebras, Chapter 1–3, Springer-Verlag, 1989.

  • G. E. Bredon, Topology and Geometry, Grad. Texts in Math., 139, Springer-Verlag, 1993.

  • J.-L. Brylinski, Loop Spaces, Characteristic Classes and Geometric Quantization, Progr. Math., 107, Birkhäuser, 1993.

  • J. I. Burgos Gil, The Regulators of Beilinson and Borel, CRM Monogr., 15, Amer. Math. Soc., 2002.

  • E. Calabi, On the group of automorphisms of a symplectic manifold, In: Probl. Analysis. Sympos. in Honor of Salomon Bochner, Princeton Univ. Press, Princeton, N.J., 1970, pp. 1–26.

  • J. E. Campbell, On a law of combination of operators bearing on the theory of continuous transformation groups, Proc. London Math. Soc., 28 (1897), 381–390.

    MATH  Google Scholar 

  • J. E. Campbell, On a law of combination of operators. (second paper), Proc. London Math. Soc., 28 (1897), 381–390.

    MATH  Google Scholar 

  • E. Cartan, Les groupes bilinéaires et les systèmes de nombres complexes, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys., 12 (1898), B1–B64.

    MathSciNet  Google Scholar 

  • E. Cartan, L’intégration des systèmes d’équations aux diffrentielles totales, Ann. Sci. École Norm. Sup. (3), 18 (1901), 241–311.

    MATH  MathSciNet  Google Scholar 

  • E. Cartan, Sur la structure des groups infinies des transformations, Ann. Sci. École. Norm. Sup., 21 (1904), 153–206; 22 (1905), 219–308.

    Google Scholar 

  • E. Cartan, Le troisième théorème fondamental de Lie, C. R. Math. Acad. Sci. Paris, 190 (1930), 914–916, 1005–1007.

  • E. Cartan, La topologie des groupes de Lie. (Exposés de géométrie Nr. 8.), Actualités. Sci. Indust., 358 (1936), p. 28.

    MATH  Google Scholar 

  • E. Cartan, La topologie des espaces représentifs de groupes de Lie, Oeuvres I, Gauthier–Villars, Paris, 2 (1952), 1307–1330.

    Google Scholar 

  • G. Cassinelli, E. de Vito, P. Lahti and A. Levrero, Symmetries of the quantum state space and group representations, Rev. Math. Phys., 10 (1998), 893–924.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Chernoff and J. Marsden, On continuity and smoothness of group actions, Bull. Amer. Math. Soc., 76 (1970), 1044–1049.

    MATH  MathSciNet  Google Scholar 

  • C. Chevalley, Theory of Lie Groups I, Princeton Univ. Press, 1946.

  • C. Chevalley and S. Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc., 63 (1948), 85–124.

    Article  MATH  MathSciNet  Google Scholar 

  • A. Connes, Non-commutative Geometry, Academic Press, 1994.

  • J. A. Cuenca Mira, A. Garcia Martin and C. Martin Gonzalez, Structure theory of L *-algebras, Math. Proc. Cambridge Philos. Soc., 107 (1990), 361–365.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Dai and D. Pickrell, The orbit method and the Virasoro extension of ( \(\hbox{Diff}_+{\user2{\mathbb{S}}}^{1}\)). I. Orbital integrals, J. Geom. Phys., 44 (2003), 623–653.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Dazord, Lie groups and algebras in infinite dimension: a new approach, In: Symplectic Geometry and Quantization, Contemp. Math., 179, Amer. Math. Soc., Providence, RI, 1994, pp. 17–44.

  • J. Delsartes, Les groups de transformations linéaires dans l’espace de Hilbert, Mém. Sci. Math., 57, Paris.

  • I. Dimitrov and I. Penkov, Weight modules of direct limit Lie algebras, Internat. Math. Res. Notices, 5 (1999), 223–249.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Donato and P. Iglesias, Examples de groupes difféologiques: flots irrationnels sur le tore, C. R. Acad. Sci. Paris Ser. I Math., 301 (1985), 127–130.

    MATH  MathSciNet  Google Scholar 

  • A. Douady and M. Lazard, Espaces fibrés en algèbres de Lie et en groupes, Invent. Math., 1 (1966), 133–151.

    Article  MATH  MathSciNet  Google Scholar 

  • A. Dress, Newman’s Theorem on transformation groups, Topology, 8 (1969), 203–207.

    Article  MATH  MathSciNet  Google Scholar 

  • E. B. Dynkin, Calculation of the coefficients in the Campbell–Hausdorff formula (Russian), Dokl. Akad. Nauk. SSSR (N.S.), 57 (1947), 323–326.

    MATH  MathSciNet  Google Scholar 

  • E. B. Dynkin, Normed Lie Algebras and Analytic Groups, Amer. Math. Soc. Transl., 97 (1953), p. 66.

    MathSciNet  Google Scholar 

  • D. G. Ebin, The manifold of Riemannian metrics, In: Global Analysis, Berkeley, Calif., 1968, Proc. Sympos. Pure Math., 15 (1970), pp. 11–40.

  • D. G. Ebin and J. E. Marsden, Groups of diffeomorphisms and the solution of the classical Euler equations for a perfect fluid, Bull. Amer. Math. Soc., 75 (1969), 962–967.

    MATH  MathSciNet  Google Scholar 

  • D. G. Ebin and J. E. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math., 92 (1970), 102–163.

    Article  MATH  MathSciNet  Google Scholar 

  • D. G. Ebin and G. Misiolek, The exponential map on \({\user1{\mathcal{D}}}^{s}_{\mu }\). In: The Arnoldfest, Toronto, ON, 1997, Fields Inst. Commun., 24, Amer. Math. Soc., Providence, RI, 1999, 153–163.

  • J. Eells, Jr., On the geometry of function spaces, In: International Symposium on Algebraic Topology, Universidad Nacional Autonoma de México and UNESCO, Mexico City, pp. 303–308.

  • J. Eells, Jr., A setting for global analysis, Bull. Amer. Math. Soc., 72 (1966), 751–807.

    MathSciNet  Google Scholar 

  • J. Eichhorn and R. Schmid, Form preserving diffeomorphisms on open manifolds, Ann. Global Anal. Geom., 14 (1996), 147–176.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Eichhorn and R. Schmid, Lie groups of Fourier integral operators on open manifolds, Comm. Anal. Geom., 9 (2001), 983–1040.

    MATH  MathSciNet  Google Scholar 

  • M. Eichler, A new proof of the Baker–Campbell–Hausdorff formula, J. Math. Soc. Japan, 20 (1968), 23–25.

    MATH  MathSciNet  Google Scholar 

  • W. T. van Est, Local and global groups, Proc. Konink. Nederl. Akad. Wetensch. Ser. A, 65; Indag. Math., 24 (1962), 391–425.

  • W. T. van Est, On Ado’s theorem, Proc. Konink. Nederl. Akad. Wetensch. Ser. A, 69; Indag. Math., 28 (1966), 176–191.

  • W. T. van Est, Rapport sur les S-atlas, Astérisque, 116 (1984), 235–292.

    MATH  Google Scholar 

  • W. T. van Est, Une démonstration de É. Cartan du troisième théorème de Lie, In: Seminaire Sud-Rhodanien de Geometrie VIII: Actions Hamiltoniennes de Groupes; Troisième Théorème de Lie, (eds. P. Dazord et al.), Hermann, Paris, 1988.

  • W. T. van Est and Th. J. Korthagen, Non enlargible Lie algebras, Proc. Konink. Nederl. Akad. Wetensch. Ser. A; Indag. Math., 26 (1964), 15–31.

    Google Scholar 

  • W. T. van Est and S. Świerczkowski, The path functor and faithful representability of Banach Lie algebras, In: Collection of articles dedicated to the memory of Hannare Neumann, I., J. Austral. Math. Soc., 16 (1973), 54–69.

  • P. I. Etinghof and I. B. Frenkel, Central extensions of current groups in two dimensions, Comm. Math. Phys., 165 (1994), 429–444.

    Article  MathSciNet  Google Scholar 

  • R. P. Filipkiewicz, Isomorphisms between diffeomorphism groups, Ergodic Theory Dynam. Systems, 2 (1983), 159–171.

    MathSciNet  Google Scholar 

  • K. Floret, Lokalkonvexe Sequenzen mit kompakten Abbildungen, J. Reine Angew. Math., 247 (1971), 155–195.

    MATH  MathSciNet  Google Scholar 

  • Ch. Freifeld, One-parameter subgroups do not fill a neighborhood of the identity in an infinite-dimensional Lie (pseudo-) group, Battelle Rencontres, 1967, Lectures Math. Phys., Benjamin, New York, 1968, 538–543.

  • A. Frölicher and W. Bucher, Calculus in Vector Spaces without Norm, Lecture Notes in Math., 30, Springer-Verlag, 1966.

  • A. Frölicher and A. Kriegl, Linear Spaces and Differentiation Theory, J. Wiley, Interscience, 1988.

  • D. B. Fuks, Cohomology of Infinite-Dimensional Lie Algebras, Consultants Bureau, New York, London, 1986.

  • G. Galanis, Projective limits of Banach–Lie groups, Period. Math. Hungar., 32 (1996), 179–191.

    Article  MATH  MathSciNet  Google Scholar 

  • G. Galanis, On a type of linear differential equations in Fréchet spaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24 (1997), 501–510.

    MATH  MathSciNet  Google Scholar 

  • S. L. Glashow, and M. Gell-Mann, Gauge theories of vector particles, Ann. Physics, 15 (1961), 437–460.

    Article  MATH  MathSciNet  Google Scholar 

  • H. Glöckner, Infinite-dimensional Lie groups without completeness restrictions, In: Geometry and Analysis on Finite and Infinite-dimensional Lie Groups, (eds. A. Strasburger, W. Wojtynski, J. Hilgert and K.-H. Neeb), Banach Center Publ., 55 (2002), 43–59.

  • H. Glöckner, Algebras whose groups of units are Lie groups, Studia Math., 153 (2002), 147–177.

    MATH  MathSciNet  Google Scholar 

  • H. Glöckner, Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups, J. Funct. Anal., 194 (2002), 347–409.

    Article  MATH  MathSciNet  Google Scholar 

  • H. Glöckner, Patched locally convex spaces, almost local mappings, and diffeomorphism groups of non-compact manifolds, TU Darmstadt, manuscript, 26.6.02.

  • H. Glöckner, Implicit functions from topological vector spaces to Banach spaces, Israel J. Math., to appear, math.GM/0303320.

  • H. Glöckner, Direct limit Lie groups and manifolds, J. Math. Kyoto Univ., 43 (2003), 1–26.

    MATH  Google Scholar 

  • H. Glöckner, Lie groups of measurable mappings, Canad. J. Math., 55 (2003), 969–999.

    MATH  MathSciNet  Google Scholar 

  • H. Glöckner, Tensor products in the category of topological vector spaces are not associative, Comment. Math. Univ. Carolin., 45 (2004), 607–614.

    MathSciNet  MATH  Google Scholar 

  • H. Glöckner, Lie groups of germs of analytic mappings, In: Infinite Dimensional Groups and Manifolds, (eds. V. Turaev and T. Wurzbacher), IRMA Lect. Math. Theor. Phys., de Gruyter, 2004, pp. 1–16.

  • H. Glöckner, Fundamentals of direct limit Lie theory, Compositio Math., 141 (2005), 1551–1577.

    Article  MATH  Google Scholar 

  • H. Glöckner, Discontinuous non-linear mappings on locally convex direct limits, Publ. Math. Debrecen, 68 (2006) 1–13.

    MATH  MathSciNet  Google Scholar 

  • H. Glöckner, Fundamental problems in the theory of infinite-dimensional Lie groups, J. Geom. Symmetry Phys., 5 (2006), 24–35.

    MATH  MathSciNet  Google Scholar 

  • H. Glöckner, Direct limits of infinite-dimensional Lie groups compared to direct limits in related categories, in preparation.

  • H. Glöckner, Direct limit groups do not have small subgroups, preprint, math.GR/0602407.

  • H. Glöckner and K.-H. Neeb, Banach–Lie quotients, enlargibility, and universal complexifications, J. Reine Angew. Math., 560 (2003), 1–28.

    MATH  MathSciNet  Google Scholar 

  • H. Glöckner and K.-H. Neeb, Infinite-dimensional Lie groups, Vol. I, Basic Theory and Main Examples, book in preparation.

  • H. Glöckner and K.-H. Neeb, Infinite-dimensional Lie groups, Vol. II, Geometry and Topology, book in preparation.

  • G. A. Goldin, Lectures on diffeomorphism groups in quantum physics, In: Contemporary Problems in Mathematical Physics, Cotonue, 2003, Proc. of the third internat. workshop, 2004, pp. 3–93.

  • R. Goodman and N. R. Wallach, Structure and unitary cocycle representations of loop groups and the group of diffeomorphisms of the circle, J. Reine Angew. Math., 347 (1984), 69–133.

    MATH  MathSciNet  Google Scholar 

  • R. Goodman and N. R. Wallach, Projective unitary positive energy representations of Diff \({\user2{\mathbb{S}}}^{1}\), J. Funct. Anal., 63 (1985), 299–312.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Goto, On an arcwise connected subgroup of a Lie group, Proc. Amer. Math. Soc., 20 (1969), 157–162.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Grabowski Free subgroups of diffeomorphism groups, Fund. Math., 131 (1988), 103–121.

    MATH  MathSciNet  Google Scholar 

  • J. Grabowski, Derivative of the exponential mapping for infinite-dimensional Lie groups, Ann. Global Anal. Geom., 11 (1993), 213–220.

    MATH  MathSciNet  Google Scholar 

  • J. M. Gracia-Bondia, J. C. Vasilly and H. Figueroa, Elements of Non-commutative Geometry, Birkhäuser Advanced Texts, Birkhäuser, Basel, 2001.

  • B. Gramsch, Relative Inversion in der Störungstheorie von Operatoren und Ψ-Algebren, Math. Ann., 269 (1984), 22–71.

    Article  MathSciNet  Google Scholar 

  • H. Grundling and K.- H. Neeb, Lie group extensions associated to modules of continuous inverse algebras, in preparation.

  • J. Gutknecht, Die C Γ-Struktur auf der Diffeomorphismengruppe einer kompakten Mannigfaltigkeit, Ph. D. thesis, Eidgenössische Technische Hochschule Zürich, Diss. No. 5879, Juris Druck + Verlag, Zurich, 1977.

  • R. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc., 7 (1982), 65–222.

    MATH  MathSciNet  Google Scholar 

  • P. de la Harpe, Classical Banach–Lie Algebras and Banach–Lie Groups of Operators in Hilbert Space, Lecture Notes in Math., 285, Springer-Verlag, 1972.

  • L. A. Harris and W. Kaup, Linear algebraic groups in infinite dimensions, Illinois J. Math., 21 (1977), 666–674.

    MATH  MathSciNet  Google Scholar 

  • F. Hausdorff, Die symbolische Exponentialformel in der Gruppentheorie, Leipziger Berichte, 58 (1906), 19–48.

    MATH  Google Scholar 

  • M. Hausner and J. T. Schwartz, Lie Groups; Lie Algebras, Gordon and Breach, New York, London, Paris, 1968.

  • G. Hector and E. Macías-Virgós, Diffeological groups, Res. Exp. Math., 25 (2002), 247–260.

    MATH  Google Scholar 

  • A. Ya. Helemskii, Banach and Locally Convex Algebras, Oxford Sci. Publications, Oxford University Press, New York, 1993.

    Google Scholar 

  • S. Hiltunen, Implicit functions from locally convex spaces to Banach spaces, Studia Math., 134 (1999), 235–250.

    MATH  MathSciNet  Google Scholar 

  • G. Hochschild, Group extensions of Lie groups I, II, Ann. of Math., 54 (1951), 96–109; 54 (1951), 537–551.

  • G. Hochschild, The Structure of Lie Groups, Holden Day, San Francisco, 1965.

    MATH  Google Scholar 

  • K. H. Hofmann, Introduction to the Theory of Compact Groups. Part I, Dept. Math. Tulane Univ., New Orleans, LA, 1968.

    MATH  Google Scholar 

  • K. H. Hofmann, Die Formel von Campbell, Hausdorff und Dynkin und die Definition Liescher Gruppen, In: Theory Sets Topology in Honour of Felix Hausdorff, 1868–1942, VEB Deutsch, Verlag Wissensch., Berlin, 1972, pp. 251–264.

  • K. H. Hofmann, Analytic groups without analysis, Sympos. Math., 16, Convegno sui Gruppi Topologici e Gruppi di Lie, INDAM, Rome, 1974, Academic Press, London, 1975, pp. 357–374.

  • K. H. Hofmann and S. A. Morris, The Structure of Compact Groups, de Gruyter Stud. Math., de Gruyter, Berlin, 1998.

    MATH  Google Scholar 

  • K. H. Hofmann and S. A. Morris, Sophus Lie’s third fundamental theorem and the adjoint functor theorem, J. Group Theory, 8 (2005), 115–123.

    Article  MATH  MathSciNet  Google Scholar 

  • K. H. Hofmann and S. A. Morris, The Lie Theory of Connected Pro-Lie Groups–A Structure Theory for Pro-Lie Algebras, Pro-Lie Groups and Connected Locally Compact Groups, EMS Publishing House, Zürich, to appear (2006).

  • K. H. Hofmann, S. A. Morris and D. Poguntke, The exponential function of locally connected compact abelian groups, Forum Math., 16 (2004), 1–16.

    Article  MATH  MathSciNet  Google Scholar 

  • K. H. Hofmann and K.-H. Neeb, Pro-Lie groups which are infinite-dimensional Lie groups, submitted.

  • H. Hopf, Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helv., 14 (1942), 257–309.

    MATH  MathSciNet  Google Scholar 

  • L. van Hove, Topologie des espaces fonctionnels analytiques, et des groups infinis des transformations, Acad. Roy. Belgique, Bull. Cl. Sci. (5), 38 (1952), 333–351.

    MATH  MathSciNet  Google Scholar 

  • L. van Hove, L’ensemble des fonctions analytiques sur un compact en tant qu’algèbre topologique, Bull. Soc. Math. Belg., 1952, 8–17 (1953).

  • R. S. Ismagilov, Representations of Infinite-Dimensional Groups, Transl. Math. Monogr., 152 (1996).

  • V. G. Kac, Constructing groups associated to infinite-dimensional Lie algebras, In: Infinite-Dimensional Groups with Applications, (ed. V. Kac), MSRI Publications, 4, Springer-Verlag, 1985.

  • V. G. Kac, Infinite-dimensional Lie Algebras, Cambridge University Press, 1990.

  • V. G. Kac and D. H. Peterson, Regular functions on certain infinite-dimensional groups, In: Arithmetic and Geometry, (eds. M. Artin and J. Tate), 2, Birkhäuser, Boston, 1983.

  • N. Kamran and T. Robart, A manifold structure for analytic Lie pseudogroups of infinite type, J. Lie Theory, 11 (2001), 57–80.

    MATH  MathSciNet  Google Scholar 

  • N. Kamran and T. Robart, An infinite-dimensional manifold structure for analytic Lie pseudogroups of infinite type, Internat. Math. Res. Notices, 34 (2004), 1761–1783.

    Article  MATH  MathSciNet  Google Scholar 

  • W. Kaup, Über die Klassifikation der symmetrischen hermiteschen Mannigfaltigkeiten unendlicher Dimension I, Math. Ann., 257 (1981), 463–486.

    Article  MATH  MathSciNet  Google Scholar 

  • W. Kaup, A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z., 183 (1983), 503–529.

    Article  MATH  MathSciNet  Google Scholar 

  • W. Kaup, Über die Klassifikation der symmetrischen hermiteschen Mannigfaltigkeiten unendlicher Dimension II, Math. Ann., 262 (1983), 57–75.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Kedra, D. Kotchick and S. Morita, Crossed flux homomorphisms and vanishing theorems for flux groups, preprint, Aug. 2005, math.AT/0503230.

  • H. H. Keller, Differential Calculus in Locally Convex Spaces, Springer-Verlag, 1974.

  • A. Kirillov, The orbit method beyond Lie groups. Infinite-dimensional groups, Surveys in modern mathematics, 292–304; London Math. Soc. Lecture Note Ser., 321, Cambridge Univ. Press, Cambridge, 2005.

  • A. A. Kirillov and D. V. Yuriev, Kähler geometry of the infinite-dimensional homogeneous space \(M = \hbox{Diff}_+({\user2{\mathbb{S}}}^{1})/\hbox{Rot}({\user2{\mathbb{S}}}^{1})\), Funct. Anal. Appl., 21 (1987), 284–294.

    Article  MATH  Google Scholar 

  • O. Kobayashi, A. Yoshioka, Y. Maeda and H. Omori, The theory of infinite-dimensional Lie groups and its applications, Acta Appl. Math., 3 (1985), 71–106.

    Article  MATH  MathSciNet  Google Scholar 

  • N. Kopell, Commuting diffeomorphisms, Proc. Sympos. Pure Math., 14 (1970), 165–184.

    MATH  MathSciNet  Google Scholar 

  • B. Kostant, Quantization and unitary representations, In: Lectures in Modern Analysis and Applications III, Lecture Notes in Math., 170, Springer-Verlag, 1970, pp. 87–208.

  • G. Köthe, Topological Vector Spaces I, Grundlehren der Math. Wissenschaften, 159, Springer-Verlag, Berlin etc., 1969.

  • A. Kriegl and P. Michor, The Convenient Setting of Global Analysis, Math. Surveys Monogr., 53 (1997).

  • A. Kriegl and P. Michor, Regular infinite-dimensional Lie groups, J. Lie Theory, 7 (1997), 61–99.

    MATH  MathSciNet  Google Scholar 

  • N. H. Kuiper, The homotopy type of the unitary group of Hilbert space, Topology, 3 (1965), 19–30.

    Article  MATH  MathSciNet  Google Scholar 

  • S. Kumar, Kac-Moody Groups, their Flag Varieties and Representation Theory, Progr. Math., 204, Birkhäuser, Boston, MA, 2002.

  • M. Kuranishi, On the local theory of continuous infinite pseudo groups I, Nagoya Math. J., 15 (1959), 225–260.

    MathSciNet  Google Scholar 

  • F. Lalonde, D. McDuff and L. Polterovich, On the flux conjectures, In: Geometry, topology, and dynamics, Montreal, PQ, 1995, CRM Proc. Lecture Notes, 15, Amer. Math. Soc., Providence, RI, 1998, pp. 69–85.

  • S. Lang, Fundamentals of Differential Geometry, Grad. Texts in Math., 191, Springer-Verlag, 1999.

  • V. T. Laredo, Integration of unitary representations of infinite dimensional Lie groups, J. Funct. Anal., 161 (1999), 478–508.

    Article  MATH  MathSciNet  Google Scholar 

  • R. K. Lashof, Lie algebras of locally compact groups, Pacific J. Math., 7 (1957), 1145–1162.

    MATH  MathSciNet  Google Scholar 

  • D. Laugwitz, Über unendliche kontinuierliche Gruppen. I. Grundlagen der Theorie; Untergruppen, Math. Ann., 130 (1955), 337–350.

    Article  MATH  MathSciNet  Google Scholar 

  • D. Laugwitz, Über unendliche kontinuierliche Gruppen. II. Strukturtheorie lokal Banachscher Gruppen, Bayer. Akad. Wiss. Math. Natur. Kl. Sitzungsber., 1956, 261–286 (1957).

  • M. Lazard and J. Tits, Domaines d’injectivité de l’application exponentielle, Topology, 4 (1966), 315–322.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Lecomte, Sur l’algèbre de Lie des sections d’un fibré en algèbre de Lie, Ann. Inst. Fourier, 30 (1980), 35–50.

    MATH  MathSciNet  Google Scholar 

  • P. Lecomte, Sur la suite exacte canonique associée à un fibré principal, Bull. Soc. Math. France, 13 (1985), 259–271.

    MathSciNet  Google Scholar 

  • L. Lempert, The Virasoro group as a complex manifold, Math. Res. Lett., 2 (1995), 479–495.

    MATH  MathSciNet  Google Scholar 

  • L. Lempert, The problem of complexifying a Lie group, In: Multidimensional Complex Analysis and Partial Differential Equations, (eds. P. D. Cordaro et al.), Amer. Math. Soc., Contemp. Math., 205 (1997), 169–176.

  • J. A. Leslie, On a theorem of E. Cartan, Ann. Mat. Pura Appl. (4), 74 (1966), 173–177.

    MATH  MathSciNet  Google Scholar 

  • J. A. Leslie, On a differential structure for the group of diffeomorphisms, Topology, 6 (1967), 263–271.

    Article  MATH  MathSciNet  Google Scholar 

  • J. A. Leslie, Some Frobenius theorems in global analysis, J. Differential Geom., 2 (1968), 279–297.

    MATH  MathSciNet  Google Scholar 

  • J. A. Leslie, On the group of real analytic diffeomorphisms of a compact real analytic manifold, Trans. Amer. Math. Soc., 274 (1982), 651–669.

    Article  MATH  MathSciNet  Google Scholar 

  • J. A. Leslie, A Lie group structure for the group of analytic diffeomorphisms, Boll. Un. Mat. Ital. A (6), 2 (1983), 29–37.

    MATH  MathSciNet  Google Scholar 

  • J. A. Leslie, A path functor for Kac-Moody Lie algebras, In: Lie Theory, Differential Equations and Representation Theory, Montreal, PQ, 1989, Univ. Montreal, Montreal, QC, 1990, pp. 265–270.

  • J. A. Leslie, Some integrable subalgebras of infinite-dimensional Lie groups, Trans. Amer. Math. Soc., 333 (1992), 423–443.

    Article  MATH  MathSciNet  Google Scholar 

  • J. A. Leslie, On the integrability of some infinite dimensional Lie algebras, Howard University, preprint, 1993.

  • J. A. Leslie, On a diffeological group realization of certain generalized symmetrizable Kac-Moody Lie algebras, J. Lie Theory, 13 (2003), 427–442.

    MATH  MathSciNet  Google Scholar 

  • D. Lewis, Formal power series transformations, Duke Math. J., 5 (1939), 794–805.

    Article  MATH  MathSciNet  Google Scholar 

  • S. Lie, Theorie der Transformationsgruppen I, Math. Ann., 16 (1880), 441–528.

    Article  MATH  MathSciNet  Google Scholar 

  • S. Lie, Unendliche kontinuierliche Gruppen, Abh. Sächs. Ges. Wiss., 21 (1895), 43–150.

    Google Scholar 

  • J.-L. Loday, Cyclic Homology, Grundlehren Math. Wiss., 301, Springer-Verlag, Berlin, 1998.

  • O. Loos, Symmetric Spaces I: General Theory, Benjamin, New York, Amsterdam, 1969.

    MATH  Google Scholar 

  • M. V. Losik, Fréchet manifolds as diffeologic spaces, Russian Math., 36 (1992), 31–37.

    MATH  Google Scholar 

  • D. Luminet and A. Valette, Faithful uniformly continuous representations of Lie groups, J. London Math. Soc. (2), 49 (1994), 100–108.

    MATH  MathSciNet  Google Scholar 

  • S. MacLane, Homology, Grundlehren Math. Wiss., 114, Springer-Verlag, 1963.

  • S. MacLane, Origins of the cohomology of groups, Enseig. Math., 24 (1978), 1–29.

    MathSciNet  Google Scholar 

  • Y. Maeda, H. Omori, O. Kobayashi and A. Yoshioka, On regular Fréchet-Lie groups. VIII. Primordial operators and Fourier integral operators, Tokyo J. Math., 8 (1985), 1–47.

    MATH  MathSciNet  Google Scholar 

  • P. Maier, Central extensions of topological current algebras, In: Geometry and Analysis on Finite-and Infinite-Dimensional Lie Groups, (eds. A. Strasburger et al.), Banach Center Publ., 55, Warszawa, 2002.

  • P. Maier and K.-H. Neeb, Central extensions of current groups, Math. Ann., 326 (2003), 367–415.

    Article  MATH  MathSciNet  Google Scholar 

  • B. Maissen, Lie-Gruppen mit Banachräumen als Parameterräume, Acta Math., 108 (1962), 229–269.

    MATH  MathSciNet  Google Scholar 

  • B. Maissen, Über Topologien im Endomorphismenraum eines topologischen Vektorraums, Math. Ann., 151 (1963), 283–285.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Marion and T. Robart, Regular Fréchet Lie groups of invertibe elements in some inverse limits of unital involutive Banach algebras, Georgian Math. J., 2 (1995), 425–444.

    Article  MATH  MathSciNet  Google Scholar 

  • J. E. Marsden, Hamiltonian one parameter groups: A mathematical exposition of infinite dimensional Hamiltonian systems with applications in classical and quantum mechanics, Arch. Rational Mech. Anal., 28 (1968), 362–396.

    MATH  MathSciNet  Google Scholar 

  • J. E. Marsden and R. Abraham, Hamiltonian mechanics on Lie groups and Hydrodynamics, In: Global Analysis, (eds. S. S. Chern and S. Smale), Proc. Sympos. Pure Math., 16, 1970, Amer. Math. Soc., Providence, RI, pp. 237–244.

  • L. Maurer, Über allgemeinere Invarianten-Systeme, Münchner Berichte, 43 (1888), 103–150.

    Google Scholar 

  • W. Mayer and T. Y. Thomas, Foundations of the theory of Lie groups, Ann. of Math., 36 (1935), 770–822.

    Article  MATH  MathSciNet  Google Scholar 

  • D. McDuff, Enlarging the Hamiltonian group, preprint, May 2005, math.SG/0503268.

  • D. McDuff and D. Salamon, Introduction to Symplectic Topology, Oxford Math. Monogr., 1998.

  • E. Michael, Convex structures and continuous selections, Canad. J. Math., 11 (1959), 556–575.

    MATH  MathSciNet  Google Scholar 

  • A. D. Michal, Differential calculus in linear topological spaces, Proc. Nat. Acad. Sci. U. S. A., 24 (1938), 340–342.

    Article  MATH  Google Scholar 

  • A. D. Michal, Differential of functions with arguments and values in topological abelian groups, Proc. Nat. Acad. Sci. U. S. A., 26 (1940), 356–359.

    Article  MATH  MathSciNet  Google Scholar 

  • A. D. Michal, The total differential equation for the exponential function in non-commutative normed linear rings, Proc. Nat. Acad. Sci. U. S. A., 31 (1945), 315–317.

    Article  MATH  MathSciNet  Google Scholar 

  • A. D. Michal, Differentiable infinite continuous groups in abstract spaces, Rev. Ci., Lima 50 (1948), 131–140.

    MATH  MathSciNet  Google Scholar 

  • A. D. Michal and V. Elconin, Differential properties of abstract transformation groups with abstract parameters, Amer. J. Math., 59 (1937), 129–143.

    Article  MATH  MathSciNet  Google Scholar 

  • P. W. Michor, Manifolds of Differentiable Mappings, Shiva Publishing, Orpington, Kent (U.K.), 1980.

  • P. W. Michor, A convenient setting for differential geometry and global analysis I, II, Cahiers. Topologie Géom. Différentielle Catég., 25 (1984), 63–109, 113–178.

    MATH  MathSciNet  Google Scholar 

  • P. W. Michor, The cohomology of the diffeomorphism group of a manifold is a Gelfand-Fuks cohomology, In: Proc. of the 14th Winter School on Abstr. Analysis, Srni, 1986, Rend. Circ. Mat. Palermo (2) Suppl., 14, 1987, pp. 235–246.

  • P. W. Michor, Gauge Theory for Fiber Bundles, Bibliopolis, ed. di fil. sci., Napoli, 1991.

  • P. Michor and J. Teichmann, Description of infinite dimensional abelian regular Lie groups, J. Lie Theory, 9 (1999), 487–489.

    MATH  MathSciNet  Google Scholar 

  • J. Mickelsson, Kac-Moody groups, topology of the Dirac determinant bundle, and fermionization, Comm. Math. Phys., 110 (1987), 173–183.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Mickelsson, Current algebras and groups, Plenum Press, New York, 1989.

    MATH  Google Scholar 

  • J. Milnor, On infinite-dimensional Lie groups, Institute of Adv. Stud. Princeton, preprint, 1982.

  • J. Milnor, Remarks on infinite-dimensional Lie groups, In: Relativité, groupes et topologie II, (eds. B. DeWitt and R. Stora), Les Houches, 1983, North Holland, Amsterdam, 1984, pp. 1007–1057.

  • D. Montgomery and L. Zippin, Topological Transformation Groups, Interscience, New York, 1955.

    MATH  Google Scholar 

  • J. Moser, A new technique for the construction of solutions of nonlinear differential equations, Proc. Nat. Acad. Sci. U. S. A., 47 (1961), 1824–1831.

    Article  MATH  MathSciNet  Google Scholar 

  • S. B. Myers, Algebras of differentiable functions, Proc. Amer. Math. Soc., 5 (1954), 917–922.

    Article  MATH  MathSciNet  Google Scholar 

  • T. Nagano, Linear differential systems with singularities and an application to transitive Lie algebras, J. Math. Soc. Japan, 18 (1966), 398–404.

    MATH  MathSciNet  Google Scholar 

  • M. Nagumo, Einige analytische Untersuchungen in linearen metrischen Ringen, Japan. J. Math., 13 (1936), 61–80.

    MATH  Google Scholar 

  • L. Natarajan, E. Rodriguez-Carrington and J. A. Wolf, Differentiable structure for direct limit groups, Lett. Math. Phys., 23 (1991), 99–109.

    Article  MATH  MathSciNet  Google Scholar 

  • L. Natarajan, E. Rodriguez-Carrington and J. A. Wolf, Locally convex Lie groups, Nova J. Algebra Geom., 2 (1993), 59–87.

    MATH  MathSciNet  Google Scholar 

  • L. Natarajan, E. Rodriguez-Carrington and J. A. Wolf, New classes of infinite dimensional Lie groups, Proc. Sympos. Pure Math., 56 (1994), 377–392.

    MATH  MathSciNet  Google Scholar 

  • L. Natarajan, E. Rodriguez-Carrington and J. A. Wolf, The Bott–Borel–Weil theorem for direct limit groups, Trans. Amer. Math. Soc., 353 (2001), 4583–4622.

    Article  MATH  MathSciNet  Google Scholar 

  • D. S. Nathan, One-parameter groups of transformations in abstract vector spaces, Duke Math. J., 1 (1935), 518–526.

    Article  MATH  MathSciNet  Google Scholar 

  • K.-H. Neeb, Holomorphic highest weight representations of infinite dimensional complex classical groups, J. Reine Angew. Math., 497 (1998), 171–222.

    MATH  MathSciNet  Google Scholar 

  • K.-H. Neeb, Holomorphy and Convexity in Lie Theory, Expositions in Mathematics, 28, de Gruyter Verlag, Berlin, 1999.

  • K.-H. Neeb, Representations of infinite dimensional groups, In: Infinite Dimensional Kähler Manifolds, (eds. A. Huckleberry and T. Wurzbacher), DMV Sem., 31, Birkhäuser, 2001, pp. 131–178.

  • K.-H. Neeb, Locally finite Lie algebras with unitary highest weight representations, Manuscripta Math., 104 (2001), 343–358.

    Article  MathSciNet  Google Scholar 

  • K.-H. Neeb, Central extensions of infinite-dimensional Lie groups, Ann. Inst. Fourier, 52 (2002), 1365–1442.

    MATH  MathSciNet  Google Scholar 

  • K.-H. Neeb, Classical Hilbert–Lie groups, their extensions and their homotopy groups, In: Geometry and Analysis on Finite and Infinite-dimensional Lie Groups, (eds. A. Strasburger, W. Wojtynski, J. Hilgert and K.-H. Neeb), Banach Center Publ., 55, Warszawa, 2002, pp. 87–151.

  • K.-H. Neeb, A Cartan–Hadamard Theorem for Banach–Finsler manifolds, Geom. Dedicata, 95 (2002), 115–156.

    Article  MATH  MathSciNet  Google Scholar 

  • K.-H. Neeb, Universal central extensions of Lie groups, Acta Appl. Math., 73 (2002), 175–219.

    Article  MATH  MathSciNet  Google Scholar 

  • K.-H. Neeb, Locally convex root graded Lie algebras, Trav. Math., 14 (2003), 25–120.

    MathSciNet  Google Scholar 

  • K.-H. Neeb, Abelian extensions of infinite-dimensional Lie groups, Trav. Math., 15 (2004), 69–194.

    MathSciNet  Google Scholar 

  • K.-H. Neeb, Infinite-dimensional Lie groups and their representations, In: Lie Theory: Lie Algebras and Representations, (eds. J. P. Anker and B. Ørsted), Progr. Math., 228, Birkhäuser, 2004, pp. 213–328.

  • K.-H. Neeb, Current groups for non-compact manifolds and their central extensions, In: Infinite Dimensional Groups and Manifolds, (ed. T. Wurzbacher), IRMA Lect. Math. Theor. Phys., 5, de Gruyter Verlag, Berlin, 2004, pp. 109–183.

  • K.-H. Neeb, Non-abelian extensions of infinite-dimensional Lie groups, Ann. Inst. Fourier, to appear.

  • K.-H. Neeb, Lie algebra extensions and higher order cocycles, J. Geom. Symmetry Phys., 5 (2006), 48–74.

    MATH  MathSciNet  Google Scholar 

  • K.-H. Neeb, Non-abelian extensions of topological Lie algebras, Comm. Algebra, 34 (2006), 991–1041.

    Article  MATH  MathSciNet  Google Scholar 

  • K.-H. Neeb, On the period group of a continuous inverse algebra, in preparation.

  • K.-H. Neeb and N. Stumme, On the classification of locally finite split simple Lie algebras, J. Reine Angew. Math., 533 (2001), 25–53.

    MATH  MathSciNet  Google Scholar 

  • K.-H. Neeb and C. Vizman, Flux homomorphisms and principal bundles over infinite-dimensional manifolds, Monatsh. Math., 139 (2003), 309–333.

    Article  MATH  MathSciNet  Google Scholar 

  • K.-H. Neeb and F. Wagemann, The second cohomology of current algebras of general Lie algebras, Canad. J. Math., to appear.

  • K.-H. Neeb and F. Wagemann, Lie group structures on groups of maps on non-compact manifolds, in preparation.

  • E. Neher, Generators and relations for 3-graded Lie algebras, J. Algebra, 155 (1993), 1–35.

    Article  MATH  MathSciNet  Google Scholar 

  • E. Neher, Lie algebras graded by 3-graded root systems and Jordan pairs covered by grids, Amer. J. Math., 118 (1996), 439–491.

    MATH  MathSciNet  Google Scholar 

  • J. von Neumann, Über die analytischen Eigenschaften von Gruppen linearer Transformationen, Math. Z., 30 (1929), 3–42.

    Article  MATH  MathSciNet  Google Scholar 

  • P. J. Olver, Applications of Lie Groups to Differential Equations, second edition, Grad. Texts in Math., 107, Springer-Verlag, New York, 1993.

    Google Scholar 

  • H. Omori, On the group of diffeomorphisms on a compact manifold, In: Global Analysis, Proc. Sympos. Pure Math., 15, Berkeley, Calif., 1968, Amer. Math. Soc., Providence, R.I., 1970, pp. 167–183.

  • H. Omori, Groups of iffeomorphisms and their subgroups, Trans. Amer. Math. Soc., 179 (1973), 85–122.

    Article  MATH  MathSciNet  Google Scholar 

  • H. Omori, Infinite Dimensional Lie Transformation Groups, Lecture Notes Math., 427, Springer-Verlag, Berlin-New York, 1974.

    MATH  Google Scholar 

  • H. Omori, On Banach–Lie groups acting on finite-dimensional manifolds, Tôhoku Math. J., 30 (1978), 223–250.

    MATH  MathSciNet  Google Scholar 

  • H. Omori, A method of classifying expansive singularities, J. Differential. Geom., 15 (1980), 493–512.

    MATH  MathSciNet  Google Scholar 

  • H. Omori, A remark on non-enlargible Lie algebras, J. Math. Soc. Japan, 33 (1981), 707–710.

    MATH  MathSciNet  Google Scholar 

  • H. Omori, Infinite-Dimensional Lie Groups, Transl. Math. Monogr., 158, Amer. Math. Soc., 1997.

  • H. Omori and P. de la Harpe, Opération de groupes de Lie banachiques sur les variétés différentielles de dimension finie, C. R. Acad. Sci. Paris Sér. A-B, 273 (1971), A395–A397.

    Google Scholar 

  • H. Omori and P. de la Harpe, About interactions between Banach–Lie groups and finite dimensional manifolds, J. Math. Kyoto Univ., 12 (1972), 543–570.

    MATH  MathSciNet  Google Scholar 

  • H. Omori, Y. Maeda and A. Yoshioka, On regular Fréchet-Lie groups. I. Some differential geometrical expressions of Fourier integral operators on a Riemannian manifold, Tokyo J. Math., 3 (1980), 353–390.

    MATH  MathSciNet  Google Scholar 

  • H. Omori, Y. Maeda and A. Yoshioka, On regular Fréchet-Lie groups. II. Composition rules of Fourier-integral operators on a Riemannian manifold, Tokyo J. Math., 4 (1981), 221–253.

    MATH  MathSciNet  Google Scholar 

  • H. Omori, Y. Maeda, A. Yoshioka and O. Kobayashi, On regular Fréchet-Lie groups. III. A second cohomology class related to the Lie algebra of pseudodifferential operators of order one, Tokyo J. Math., 4 (1981), 255–277.

    MATH  MathSciNet  Google Scholar 

  • H. Omori, Y. Maeda, A. Yoshioka and O. Kobayashi, On regular Fréchet-Lie groups IV. Definition and fundamental theorems, Tokyo J. Math., 5 (1982), 365–398.

    Article  MATH  MathSciNet  Google Scholar 

  • H. Omori, Y. Maeda, A. Yoshioka and O. Kobayashi, On regular Fréchet-Lie groups. V. Several basic properties, Tokyo J. Math., 6 (1983), 39–64.

    MATH  MathSciNet  Google Scholar 

  • H. Omori, Y. Maeda, A. Yoshioka and O. Kobayashi, On regular Fréchet-Lie groups. VI. Infinite-dimensional Lie groups which appear in general relativity, Tokyo J. Math., 6 (1983), 217–246.

    MATH  MathSciNet  Google Scholar 

  • K. Ono, Floer-Novikov cohomology and the flux conjecture, preprint, 2004.

  • J. T. Ottesen, Infinite Dimensional Groups and Algebras in Quantum Physics, Springer-Verlag, Lecture Notes in Phys., m 27, 1995.

  • R. S. Palais, A Global Formulation of the Lie Theory of Transformation Groups, Mem. Amer. Math. Soc., 22, Amer. Math. Soc., 1957.

  • V. P. Palamodov, Homological methods in the theory of locally convex spaces, Russian Math. Surveys, 26 (1971), 1–64.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Palis, On Morse-Smale dynamical systems, Topology, 8 (1968), 385–404.

    Article  MathSciNet  Google Scholar 

  • J. Palis, Vector fields generate few diffeomorphisms, Bull. Amer. Math. Soc., 80 (1974), 503–505.

    MATH  MathSciNet  Google Scholar 

  • V. G. Pestov, Nonstandard hulls of Banach–Lie groups and algebras, Nova J. Algebra Geom., 1 (1992), 371–381.

    MATH  MathSciNet  Google Scholar 

  • V. G. Pestov, Free Banach–Lie algebras, couniversal Banach–Lie groups, and more, Pacific J. Math., 157 (1993), 137–144.

    MATH  MathSciNet  Google Scholar 

  • V. G. Pestov, Enlargible Banach–Lie algebras and free topological groups, Bull. Austral. Math. Soc., 48 (1993), 13–22.

    MATH  MathSciNet  Google Scholar 

  • V. G. Pestov, Correction to “Free Banach–Lie algebras, couniversal Banach–Lie groups, and more”, Pacific J. Math., 171 (1995), 585–588.

    MATH  MathSciNet  Google Scholar 

  • V. G. Pestov, Regular Lie groups and a theorem of Lie-Palais, J. Lie Theory, 5 (1995), 173–178.

    MATH  MathSciNet  Google Scholar 

  • D. Pickrell, Invariant Measures for Unitary Groups Associated to Kac-Moody Lie Algebras, Mem. Amer. Math. Soc., 693, 2000.

  • D. Pickrell, On the action of the group of diffeomorphisms of a surface on sections of the determinant line bundle, Pacific J. Math., 193 (2000), 177–199.

    Article  MATH  MathSciNet  Google Scholar 

  • D. Pisanelli, An extension of the exponential of a matrix and a counter example to the inversion theorem in a space H(K), Rend. Mat. (6), 9 (1976), 465–475.

    MATH  MathSciNet  Google Scholar 

  • D. Pisanelli, An example of an infinite Lie group, Proc. Amer. Math. Soc., 62 (1977), 156–160.

    Article  MATH  MathSciNet  Google Scholar 

  • D. Pisanelli, The second Lie theorem in the group Gh(n, \({\user2{\mathbb{C}}}\)), In: Advances in Holomorphy, (ed. J. A. Barroso), North Holland Publ., 1979.

  • L. Polterovich, The geometry of the group of symplectic diffeomorphisms, Lectures Math., ETH Zürich, Birkhäuser, 2001.

  • L. Pontrjagin, Topological Groups, Princeton Math. Ser., 2, Princeton University Press, Princeton, 1939.

  • A. Pressley and G. Segal, Loop Groups, Oxford University Press, Oxford, 1986.

    MATH  Google Scholar 

  • M. E. Pursell, Algebraic structures associated with smooth manifolds, Thesis, Purdue Univ., 1952.

  • M. E. Pursell and M. E. Shanks, The Lie algebra of a smooth manifold, Proc. Amer. Math. Soc., 5 (1954), 468–472.

    Article  MATH  MathSciNet  Google Scholar 

  • C. R. Putnam and A. Winter, The orthogonal group in Hilbert space, Amer. J. Math., 74 (1952), 52–78.

    Article  MATH  MathSciNet  Google Scholar 

  • T. Ratiu and A. Odzijewicz, Banach Lie–Poisson spaces and reduction, Comm. Math. Phys., 243 (2003), 1–54.

    Article  MATH  MathSciNet  Google Scholar 

  • T. Ratiu and A. Odzijewicz, Extensions of Banach Lie–Poisson spaces, J. Funct. Anal., 217 (2004), 103–125.

    Article  MATH  MathSciNet  Google Scholar 

  • T. Ratiu and R. Schmid, The differentiable structure of three remarkable diffeomorphism groups, Math. Z., 177 (1981), 81–100.

    Article  MATH  MathSciNet  Google Scholar 

  • J. F. Ritt, Differential groups and formal Lie theory for an infinite number of parameters, Ann. of Math. (2), 52 (1950), 708–726.

    Article  MATH  MathSciNet  Google Scholar 

  • T. Robart, Groupes de Lie de dimension infinie. Second et troisième théorèmes de Lie. I. Groupes de première espèce, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), 1071–1074.

    MATH  MathSciNet  Google Scholar 

  • T. Robart, Sur l’intégrabilité des sous-algèbres de Lie en dimension infinie, Canad. J. Math., 49 (1997), 820–839.

    MATH  MathSciNet  Google Scholar 

  • T. Robart, Around the exponential mapping, In: Infinite Dimensional Lie Groups in Geometry and Representation Theory, World Sci. Publ., River Edge, NJ, 2002, pp. 11–30.

  • T. Robart, On Milnor’s regularity and the path-functor for the class of infinite dimensional Lie algebras of CBH type, Algebras Groups Geom., 21 (2004), 367–386.

    MATH  MathSciNet  Google Scholar 

  • T. Robart and N. Kamran, Sur la théorie locale des pseudogroupes de transformations continus infinis. I, Math. Ann., 308 (1997), 593–613.

    Article  MATH  MathSciNet  Google Scholar 

  • E. Rodriguez-Carrington, Lie groups associated to Kac–Moody Lie algebras: an analytic approach, In: Infinite-dimensional Lie Algebras and Groups, Luminy-Marseille, 1988, Adv. Ser. Math. Phys., 7, World Sci. Publ., Teaneck, NJ, 1989, pp. 57–69.

  • C. Roger, Extensions centrales d’algèbres et de groupes de Lie de dimension infinie, algèbres de Virasoro et généralisations, Rep. Math. Phys., 35 (1995), 225–266.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Rosenberg, Algebraic K-theory and its Applications, Grad. Texts in Math., 147, Springer-Verlag, 1994.

  • W. Rudin, Functional Analysis, McGraw Hill, 1973.

  • R. Schmid, Infinite-dimensional Hamiltonian Systems, Monographs and Textbooks in Physical Science, Lecture Notes, 3, Bibliopolis, Naples, 1987.

  • R. Schmid, Infinite dimensional Lie groups with applications to mathematical physics, J. Geom. Symmetry Phys., 1 (2004), 54–120.

    MATH  MathSciNet  Google Scholar 

  • R. Schmid, M. Adams and T. Ratiu, The group of Fourier integral operators as symmetry group, In: XIIIth International Colloquium on Group Theoretical Methods in Physics, College Park, Md., 1984, World Sci. Publ., Singapore, 1984, pp. 246–249.

  • J. R. Schue, Hilbert space methods in the theory of Lie algebras, Trans. Amer. Math. Soc., 95 (1960), 69–80.

    Article  MATH  MathSciNet  Google Scholar 

  • J. R. Schue, Cartan decompositions for L *-algebras, Trans. Amer. Math. Soc., 98 (1961), 334–349.

    Article  MATH  MathSciNet  Google Scholar 

  • F. Schur, Neue Begründung der Theorie der endlichen Transformationsgruppen, Math. Ann., 35 (1890), 161–197.

    Article  MATH  MathSciNet  Google Scholar 

  • F. Schur, Beweis für die Darstellbarkeit der infinitesimalen Transformationen aller transitiven endlichen Gruppen durch Quotienten beständig convergenter Potenzreihen, Leipz. Ber., 42 (1890), 1–7.

    MATH  Google Scholar 

  • G. Segal, Unitary representations of some infinite-dimensional groups, Comm. Math. Phys., 80 (1981), 301–342.

    Article  MATH  MathSciNet  Google Scholar 

  • J.-P. Serre, Lie Algebras and Lie Groups, Lecture Notes in Math., 1500, Springer-Verlag, 1965 (1st ed.).

  • I. M. Singer and S. Sternberg, The infinite groups of Lie and Cartan. I. The transitive groups, J. Anal. Math., 15 (1965), 1–114.

    MATH  MathSciNet  Google Scholar 

  • J.-M. Souriau, Groupes différentiels de physique mathématique, In: Feuilletages et Quantification Géometrique, (eds. P. Dazord and N. Desolneux-Moulis), Journ. lyonnaises Soc. math. France, 1983, Sémin. sud-rhodanien de Géom. II, Hermann, Paris, 1984, pp. 73–119.

  • J.-M. Souriau, Un algorithme générateur de structures quantiques, Soc. Math. Fr., Astérisque, hors série, 1985, 341–399.

  • S. Sternberg, Infinite Lie groups and the formal aspects of dynamical systems, J. Math. Mech., 10 (1961), 451–474.

    MATH  MathSciNet  Google Scholar 

  • N. Stumme, The Structure of Locally Finite Split Lie algebras, Ph. D. thesis, Darmstadt University of Technology, 1999.

  • H. J. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc., 180 (1973), 171–188.

    Article  MATH  MathSciNet  Google Scholar 

  • K. Suto, Groups associated with unitary forms of Kac–Moody algebras, J. Math. Soc. Japan, 40 (1988), 85–104.

    Article  MATH  MathSciNet  Google Scholar 

  • K. Suto, Borel–Weil type theorem for the flag manifold of a generalized Kac–Moody algebra, J. Algebra, 193 (1997), 529–551.

    Article  MATH  MathSciNet  Google Scholar 

  • R. G. Swan, Vector bundles and projective modules, Trans. Amer. Math. Soc., 105 (1962), 264–277.

    Article  MATH  MathSciNet  Google Scholar 

  • S. Swierczkowski, Embedding theorems for local analytic groups, Acta Math., 114 (1965), 207–235.

    Article  MATH  MathSciNet  Google Scholar 

  • S. Swierczkowski, Cohomology of local group extensions, Trans. Amer. Math. Soc., 128 (1967), 291–320.

    Article  MATH  MathSciNet  Google Scholar 

  • S. Swierczkowski, The path-functor on Banach Lie algebras, Nederl. Akad. Wet., Proc. Ser. A, 74; Indag. Math., 33 (1971), 235–239.

    Google Scholar 

  • A. Tagnoli, La varietà analitiche reali come spazi omogenei, Boll. Un. Mat. Ital. (s4), 1 (1968), 422–426.

    MathSciNet  Google Scholar 

  • J. Tits, Liesche Gruppen und Algebren, Springer-Verlag, 1983.

  • F. Treves, Topological Vector Spaces, Distributions, and Kernels, Academic Press, New York, 1967.

    MATH  Google Scholar 

  • H. Upmeier, Symmetric Banach Manifolds and Jordan C *-algebras, North Holland Mathematics Studies, 1985.

  • V. S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations, Grad. Texts in Math., 102, Springer-Verlag, 1984.

  • D. Vogt, On the functors Ext1 (E,F) for Fréchet spaces, Studia Math., 85 (1987), 163–197.

    MathSciNet  Google Scholar 

  • L. Waelbroeck, Les algèbres à inverse continu, C. R. Acad. Sci. Paris, 238 (1954), 640–641.

    MATH  MathSciNet  Google Scholar 

  • L. Waelbroeck, Le calcul symbolique dans les algèbres commutatives, J. Math. Pures Appl., 33 (1954), 147–186.

    MATH  MathSciNet  Google Scholar 

  • L. Waelbroeck, Structure des algèbres à inverse continu, C. R. Acad. Sci. Paris, 238 (1954), 762–764.

    MATH  MathSciNet  Google Scholar 

  • L. Waelbroeck, Topological Vector Spaces and Algebras, Springer-Verlag, 1971.

  • G. Warner, Harmonic Analysis on Semisimple Lie Groups I, Springer-Verlag, 1972.

  • A. Weinstein, Symplectic structures on Banach manifolds, Bull. Amer. Math. Soc., 75 (1969), 1040–1041.

    Article  MATH  MathSciNet  Google Scholar 

  • D. Werner, Funktionalanalysis, Springer-Verlag, 1995.

  • H. Wielandt, Über die Unbeschränktheit der Operatoren der Quantenmechanik, Math. Ann., 121 (1949), p. 21.

    Article  MATH  MathSciNet  Google Scholar 

  • Chr. Wockel, The Topology of Gauge Groups, submitted, math-ph/0504076.

  • Chr. Wockel, Smooth Extensions and Spaces of Smooth and Holomorphic Mappings, J. Geom. Symmetry Phys., 5 (2006), 118–126, math.DG/0511064.

    MATH  MathSciNet  Google Scholar 

  • W. Wojtyński, Effective integration of Lie algebras, J. Lie Theory, 16 (2006), 601–620.

    MATH  MathSciNet  Google Scholar 

  • J. A. Wolf, Principal series representations of direct limit groups, Compositio Math., 141 (2005), 1504–1530.

    Article  MATH  Google Scholar 

  • M. Wüstner, Supplements on the theory of exponential Lie groups, J. Algebra, 265 (2003), 148–170.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Wüstner, The classification of all simple Lie groups with surjective exponential map, J. Lie Theory, 15 (2005), 269–278.

    MATH  MathSciNet  Google Scholar 

  • K. Yosida, On the groups embedded in the metrical complete ring, Japan. J. Math., 13 (1936), 7–26.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Hermann Neeb.

About this article

Cite this article

Neeb, KH. Towards a Lie theory of locally convex groups. Jpn. J. Math. 1, 291–468 (2006). https://doi.org/10.1007/s11537-006-0606-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11537-006-0606-y

Keywords and Phrases.

Navigation