Skip to main content

Advertisement

Log in

Associations of Urban Built Environment with Cardiovascular Risks and Mortality: a Systematic Review

  • Review
  • Published:
Journal of Urban Health Aims and scope Submit manuscript

Abstract

With rapid urbanization, built environment has emerged as a set of modifiable factors of cardiovascular disease (CVD) risks. We conducted a systematic review to synthesize evidence on the associations of attributes of urban built environment (e.g. residential density, land use mix, greenness and walkability) with cardiovascular risk factors (e.g. hypertension and arterial stiffness) and major CVD events including mortality. A total of 63 studies, including 31 of cross-sectional design and 32 of longitudinal design conducted across 21 geographical locations and published between 2012 and 2023 were extracted for review. Overall, we report moderately consistent evidence of protective associations of greenness with cardiovascular risks and major CVD events (cross-sectional studies: 12 of 15 on hypertension/blood pressure (BP) and 2 of 3 on arterial stiffness; and longitudinal studies: 6 of 8 on hypertension/BP, 7 of 8 on CVD mortality, 3 of 3 on ischemic heart disease mortality and 5 of 8 studies on stroke hospitalization or mortality reporting significant inverse associations). Consistently, walkability was associated with lower risks of hypertension, arterial stiffness and major CVD events (cross-sectional studies: 11 of 12 on hypertension/BP and 1 of 1 on arterial stiffness; and longitudinal studies: 3 of 6 on hypertension/BP and 1 of 2 studies on CVD events being protective). Sixty-seven percent of the studies were rated as “probably high” risk of confounding bias because of inability to adjust for underlying comorbidities/family history of diseases in their statistical models. Forty-six percent and 14% of the studies were rated as “probably high” risk of bias for exposure and outcome measurements, respectively. Future studies with robust design will further help elucidate the linkages between urban built environment and cardiovascular health, thereby informing planning policies for creating healthy cities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wang H, Naghavi M, Allen C, et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet. 2016;388(10053):1459–544. https://doi.org/10.1016/S0140-6736(16)31012-1.

    Article  Google Scholar 

  2. World Health Organization. Cardiovascular diseases (CVDs) 2021.https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Accessed 18 Jan 2022.

    Google Scholar 

  3. Strazzullo P, D’Elia L, Kandala N-B, Cappuccio FP. Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies. BMJ. 2009;339:b4567. https://doi.org/10.1136/bmj.b4567.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Martínez-González MA, Gea A, Ruiz-Canela M. The Mediterranean diet and cardiovascular health. Circ Res. 2019;124(5):779–98. https://doi.org/10.1161/CIRCRESAHA.118.313348.

    Article  CAS  PubMed  Google Scholar 

  5. Messner B, Bernhard D. Smoking and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2014;34(3):509–15. https://doi.org/10.1161/ATVBAHA.113.300156.

    Article  CAS  PubMed  Google Scholar 

  6. Sesso HD. Alcohol and cardiovascular health. Am J Cardiovasc Drugs. 2001;1(3):167–72. https://doi.org/10.2165/00129784-200101030-00002.

    Article  CAS  PubMed  Google Scholar 

  7. Day INM, Wilson DI. Genetics and cardiovascular risk. BMJ. 2001;323(7326):1409. https://doi.org/10.1136/bmj.323.7326.1409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ahmed HM, Blaha MJ, Nasir K, Rivera JJ, Blumenthal RS. Effects of physical activity on cardiovascular disease. Am J Cardiol. 2012;109(2):288–95. https://doi.org/10.1016/j.amjcard.2011.08.042.

    Article  PubMed  Google Scholar 

  9. Narang I, Manlhiot C, Davies-Shaw J, et al. Sleep disturbance and cardiovascular risk in adolescents. Can Med Assoc J. 2012;184(17):E913. https://doi.org/10.1503/cmaj.111589.

    Article  Google Scholar 

  10. Khaing W, Vallibhakara SA, Attia J, McEvoy M, Thakkinstian A. Effects of education and income on cardiovascular outcomes: a systematic review and meta-analysis. Eur J Prev Cardiol. 2017;24(10):1032–42. https://doi.org/10.1177/2047487317705916.

    Article  PubMed  Google Scholar 

  11. Stephens JW, Humphries SE. The molecular genetics of cardiovascular disease: clinical implications. J Intern Med. 2003;253(2):120–7. https://doi.org/10.1046/j.1365-2796.2003.01104.x.

    Article  CAS  PubMed  Google Scholar 

  12. Fuchs FD, Whelton PK. High blood pressure and cardiovascular disease. Hypertension. 2020;75(2):285–92. https://doi.org/10.1161/HYPERTENSIONAHA.119.14240.

    Article  CAS  PubMed  Google Scholar 

  13. Wu S, Xu Y, Zheng R, et al. Hypertension defined by 2017 ACC/AHA guideline, ideal cardiovascular health metrics, and risk of cardiovascular disease: a nationwide prospective cohort study. The Lancet Regional Health - Western Pacific. 2022;20:100350. https://doi.org/10.1016/j.lanwpc.2021.100350.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mitchell GF, Hwang S-J, Vasan RS, et al. Arterial stiffness and cardiovascular events. Circulation. 2010;121(4):505–11. https://doi.org/10.1161/CIRCULATIONAHA.109.886655.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Said MA, Eppinga RN, Lipsic E, Verweij N, van der Harst P. Relationship of arterial stiffness index and pulse pressure with cardiovascular disease and mortality. J Am Heart Assoc. 2018;7(2):e007621. https://doi.org/10.1161/JAHA.117.007621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. World Health Organization. Fact sheets on sustainable development goals: health targets: Noncommunicable Diseases 2017. https://www.euro.who.int/__data/assets/pdf_file/0007/350278/Fact-sheet-SDG-NCD-FINAL-25-10-17.pdf. Accessed 18 Jan 2022.

    Google Scholar 

  17. Galea S, Freudenberg N, Vlahov D. Cities and population health. Soc Sci Med. 2005;60(5):1017–33. https://doi.org/10.1016/j.socscimed.2004.06.036.

    Article  PubMed  Google Scholar 

  18. Vlahov D, Freudenberg N, Proietti F, et al. Urban as a determinant of health. J Urban Health. 2007;84(1):16–26. https://doi.org/10.1007/s11524-007-9169-3.

    Article  PubMed Central  Google Scholar 

  19. Gampel B, Slome C, Scotch N, Abramson JH. Urbanization and hypertension among Zulu adults. J Chronic Dis. 1962;15(1):67–70. https://doi.org/10.1016/0021-9681(62)90102-9.

    Article  CAS  PubMed  Google Scholar 

  20. Cross SH, Mehra MR, Bhatt DL, et al. Rural-urban differences in cardiovascular mortality in the US, 1999-2017. JAMA. 2020;323(18):1852–4. https://doi.org/10.1001/jama.2020.2047.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sallis JF, Floyd MF, Rodríguez DA, Saelens BE. Role of Built Environments in Physical Activity, Obesity, and Cardiovascular Disease. Circulation. 2012;125(5):729–37. https://doi.org/10.1161/CIRCULATIONAHA.110.969022.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Saelens BE, Sallis JF, Black JB, Chen D. Neighborhood-based differences in physical activity: an environment scale evaluation. Am J Public Health. 2003;93(9):1552–8. https://doi.org/10.2105/AJPH.93.9.1552.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sarkar C, Webster C, Gallacher J. Association between adiposity outcomes and residential density: a full-data, cross-sectional analysis of 419 562 UK Biobank adult participants. Lancet Planet Health. 2017;1(7):e277–88. https://doi.org/10.1016/S2542-5196(17)30119-5.

    Article  PubMed  Google Scholar 

  24. Sarkar C, Webster C, Gallacher J. Residential greenness and prevalence of major depressive disorders: a cross-sectional, observational, associational study of 94 879 adult UK Biobank participants. Lancet Planet Health. 2018;2(4):e162–73. https://doi.org/10.1016/S2542-5196(18)30051-2.

    Article  PubMed  Google Scholar 

  25. Lachowycz K, Jones AP. Greenspace and obesity: a systematic review of the evidence. Obes Rev. 2011;12(5):e183–9. https://doi.org/10.1111/j.1467-789X.2010.00827.x.

    Article  CAS  PubMed  Google Scholar 

  26. Barboza EP, Cirach M, Khomenko S, et al. Green space and mortality in European cities: a health impact assessment study. Lancet Planet Health. 2021;5(10):e718–30. https://doi.org/10.1016/S2542-5196(21)00229-1.

    Article  PubMed  Google Scholar 

  27. Ewing R, Cervero R. “Does compact development make people drive less?” The answer is yes. J Am Plann Assoc. 2017;83(1):19–25. https://doi.org/10.1080/01944363.2016.1245112.

    Article  Google Scholar 

  28. Laverty AA, Mindell JS, Webb EA, Millett C. Active travel to work and cardiovascular risk factors in the United Kingdom. Am J Prev Med. 2013;45(3):282–8. https://doi.org/10.1016/j.amepre.2013.04.012.

    Article  PubMed  Google Scholar 

  29. Chandrabose M, Rachele JN, Gunn L, et al. Built environment and cardio-metabolic health: systematic review and meta-analysis of longitudinal studies. Obes Rev. 2019;20(1):41–54. https://doi.org/10.1111/obr.12759.

    Article  CAS  PubMed  Google Scholar 

  30. Malambo P, Kengne AP, De Villiers A, Lambert EV, Puoane T. Built environment, selected risk factors and major cardiovascular disease outcomes: a systematic review. PloS One. 2016;11(11):e0166846. https://doi.org/10.1371/journal.pone.0166846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nieuwenhuijsen MJ. Influence of urban and transport planning and the city environment on cardiovascular disease. Nat Rev Cardiol. 2018;15(7):432–8. https://doi.org/10.1038/s41569-018-0003-2.

    Article  PubMed  Google Scholar 

  32. Thornton LE, Pearce JR, Kavanagh AM. Using geographic information systems (GIS) to assess the role of the built environment in influencing obesity: a glossary. Int J Behav Nutr Phys Act. 2011;8(1):71. https://doi.org/10.1186/1479-5868-8-71.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jia P, Lakerveld J, Wu J, et al. Top 10 research priorities in spatial lifecourse epidemiology. Environ Health Perspect. 2019;127(7):074501. https://doi.org/10.1289/EHP4868.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rooney AA, Boyles AL, Wolfe MS, Bucher JR, Thayer KA. Systematic review and evidence integration for literature-based environmental health science assessments. Environ Health Perspect. 2014;122(7):711–8. https://doi.org/10.1289/ehp.1307972.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Johnson PI, Koustas E, Vesterinen HM, et al. Application of the navigation guide systematic review methodology to the evidence for developmental and reproductive toxicity of triclosan. Environ Int. 2016;92-93:716–28. https://doi.org/10.1016/j.envint.2016.03.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Adhikari B, Delgado-Ron JA, Van den Bosch M, et al. Community design and hypertension: walkability and park access relationships with cardiovascular health. Int J Hyg Environ Health. 2021;237:113820. https://doi.org/10.1016/j.ijheh.2021.113820.

    Article  PubMed  Google Scholar 

  37. Bauwelinck M, Zijlema WL, Bartoll X, et al. Residential urban greenspace and hypertension: A comparative study in two European cities. Environ Res. 2020;191:110032. https://doi.org/10.1016/j.envres.2020.110032.

    Article  CAS  PubMed  Google Scholar 

  38. Boakye KA, Iyanda AE, Oppong JR. Urban greenness and hypertension among Ghanaian adults. African Geographical Review. 2023;42(1):72–84. https://doi.org/10.1080/19376812.2021.1970596.

    Article  Google Scholar 

  39. Brown SC, Lombard J, Wang K, et al. Neighborhood greenness and chronic health conditions in Medicare beneficiaries. Am J Prev Med. 2016;51(1):78–89. https://doi.org/10.1016/j.amepre.2016.02.008.

    Article  PubMed  Google Scholar 

  40. Dzhambov AM, Markevych I, Lercher P. Greenspace seems protective of both high and low blood pressure among residents of an Alpine valley. Environ Int. 2018;121:443–52. https://doi.org/10.1016/j.envint.2018.09.044.

    Article  PubMed  Google Scholar 

  41. Huang B, Xiao T, Grekousis G, et al. Greenness-air pollution-physical activity-hypertension association among middle-aged and older adults: evidence from urban and rural China. Environ Res. 2021;195:110836. https://doi.org/10.1016/j.envres.2021.110836.

    Article  CAS  PubMed  Google Scholar 

  42. Jendrossek M, Standl M, Koletzko S, et al. Residential air pollution, road traffic, greenness and maternal hypertension: results from GINIplus and LISAplus. J Occup Environ Med. 2017;8(3):131–42. https://doi.org/10.15171/ijoem.2017.1073.

    Article  Google Scholar 

  43. Jia X, Yu Y, Xia W, et al. Cardiovascular diseases in middle aged and older adults in China: the joint effects and mediation of different types of physical exercise and neighborhood greenness and walkability. Environ Res. 2018;167:175–83. https://doi.org/10.1016/j.envres.2018.07.003.

    Article  CAS  PubMed  Google Scholar 

  44. Jiang J, Chen G, Li B, et al. Associations of residential greenness with hypertension and blood pressure in a Chinese rural population: a cross-sectional study. Environ Sci Pollut Res. 2021;28(37):51693–701. https://doi.org/10.1007/s11356-021-14201-0.

    Article  Google Scholar 

  45. Lane KJ, Stokes EC, Seto KC, Thanikachalam S, Thanikachalam M, Bell ML. Associations between greenness, impervious surface area, and nighttime lights on biomarkers of vascular aging in Chennai, India. Environ Health Perspect. 2017;125(8):087003. https://doi.org/10.1289/ehp541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nguyen TT, Nguyen QC, Rubinsky AD, et al. Google street view-derived neighborhood characteristics in california associated with coronary heart disease, hypertension, diabetes. Int J Environ Res Public Health. 2021;18(19) https://doi.org/10.3390/ijerph181910428.

  47. Plans E, Gullon P, Cebrecos A, et al. Density of green spaces and cardiovascular risk factors in the city of Madrid: the Heart Healthy Hoods study. Int J Environ Res Public Health. 2019;16(24) https://doi.org/10.3390/ijerph16244918.

  48. Poulsen MN, Schwartz BS, Nordberg C, et al. Association of greenness with blood pressure among individuals with type 2 diabetes across rural to urban community types in Pennsylvania, USA. Int J Environ Res Public Health. 2021;18(2) https://doi.org/10.3390/ijerph18020614.

  49. Savin KL, Roesch SC, Oren E, et al. Social and built neighborhood environments and blood pressure 6 years later: results from the Hispanic Community Health Study/Study of Latinos and the SOL CASAS ancillary study. Soc Sci Med. 2021:114496. https://doi.org/10.1016/j.socscimed.2021.114496.

  50. Yang B-Y, Markevych I, Bloom MS, et al. Community greenness, blood pressure, and hypertension in urban dwellers: the 33 communities Chinese health study. Environ Int. 2019;126:727–34. https://doi.org/10.1016/j.envint.2019.02.068.

    Article  PubMed  Google Scholar 

  51. de Keijzer C, Foraster M, Busagana X, et al. Long-term greenspace exposure and progression of arterial stiffness: the Whitehall II cohort study. Environ Health Perspect. 2020;128(6):67014. https://doi.org/10.1289/EHP6159.

    Article  PubMed  Google Scholar 

  52. Lai KY, Kumari S, Gallacher J, Webster C, Sarkar C. Associations of residential walkability and greenness with arterial stiffness in the UK Biobank. Environ Int. 2022;158:106960. https://doi.org/10.1016/j.envint.2021.106960.

    Article  PubMed  Google Scholar 

  53. Riggs DW, Yeager R, Conklin DJ, et al. Residential proximity to greenness mitigates the hemodynamic effects of ambient air pollution. Am J Physiol Heart Circ Physiol. 2021;320(3):H1102–11. https://doi.org/10.1152/ajpheart.00689.2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Brown SC, Aitken WW, Lombard J, et al. Precision greenness and stroke/transient ischemic attack in 249,405 US Medicare beneficiaries. J Stroke. 2023;25(1):173–6. https://doi.org/10.5853/jos.2022.02922.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang K, Lombard J, Rundek T, et al. Relationship of neighborhood greenness to heart disease in 249 405 US Medicare beneficiaries. J Am Heart Assoc. 2019;8(6):e010258. https://doi.org/10.1161/jaha.118.010258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang R, Dong P, Dong G, et al. Exploring the impacts of street-level greenspace on stroke and cardiovascular diseases in Chinese adults. Ecotoxicol Environ Saf. 2022;243:113974. https://doi.org/10.1016/j.ecoenv.2022.113974.

    Article  CAS  PubMed  Google Scholar 

  57. Yang BY, Hu LW, Jalaludin B, et al. Association between residential greenness, cardiometabolic disorders, and cardiovascular disease among adults in China. JAMA Netw Open. 2020;3(9):e2017507. https://doi.org/10.1001/jamanetworkopen.2020.17507.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Braun LM, Rodriguez DA, Song Y, et al. Changes in walking, body mass index, and cardiometabolic risk factors following residential relocation: longitudinal results from the CARDIA study. J Transp Health. 2016;3(4):426–39. https://doi.org/10.1016/j.jth.2016.08.006.

    Article  PubMed  PubMed Central  Google Scholar 

  59. de Courrèges A, Occelli F, Muntaner M, Amouyel P, Meirhaeghe A, Dauchet L. The relationship between neighbourhood walkability and cardiovascular risk factors in northern France. Sci Total Environ. 2021;772:144877. https://doi.org/10.1016/j.scitotenv.2020.144877.

    Article  CAS  PubMed  Google Scholar 

  60. Howell NA, Tu JV, Moineddin R, Chu A, Booth GL. Association between neighborhood walkability and predicted 10-year cardiovascular disease risk: the CANHEART (Cardiovascular Health in Ambulatory Care Research Team) cohort. J Am Heart Assoc. 2019;8(21):e013146. https://doi.org/10.1161/JAHA.119.013146.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Howell NA, Tu JV, Moineddin R, et al. Interaction between neighborhood walkability and traffic-related air pollution on hypertension and diabetes: the CANHEART cohort. Environ Int. 2019;132:104799. https://doi.org/10.1016/j.envint.2019.04.070.

    Article  CAS  PubMed  Google Scholar 

  62. Loo CKJ, Greiver M, Aliarzadeh B, Lewis D. Association between neighbourhood walkability and metabolic risk factors influenced by physical activity: a cross-sectional study of adults in Toronto, Canada. BMJ Open. 2017;7(4):e013889. https://doi.org/10.1136/bmjopen-2016-013889.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Makram OM, Nwana N, Nicolas JC, et al. Favorable Neighborhood walkability is associated with lower burden of cardiovascular risk factors among patients within an integrated health system: the Houston Methodist Learning Health System Outpatient Registry. Curr Probl Cardiol. 2023;48(6):101642. https://doi.org/10.1016/j.cpcardiol.2023.101642.

    Article  PubMed  Google Scholar 

  64. Méline J, Chaix B, Pannier B, et al. Neighborhood walk score and selected cardiometabolic factors in the French RECORD cohort study. BMC Public Health. 2017;17(1):960. https://doi.org/10.1186/s12889-017-4962-8.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Müller-Riemenschneider F, Pereira G, Villanueva K, et al. Neighborhood walkability and cardiometabolic risk factors in australian adults: an observational study. BMC Public Health. 2013;13(1):755. https://doi.org/10.1186/1471-2458-13-755.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sarkar C, Webster C, Gallacher J. Neighbourhood walkability and incidence of hypertension: findings from the study of 429,334 UK Biobank participants. Int J Hyg Environ Health. 2018;221(3):458–68. https://doi.org/10.1016/j.ijheh.2018.01.009.

    Article  PubMed  Google Scholar 

  67. Malambo P, De Villiers A, Lambert EV, Puoane T, Kengne AP. The relationship between objectively-measured attributes of the built environment and selected cardiovascular risk factors in a South African urban setting. BMC Public Health. 2018;18(1):847. https://doi.org/10.1186/s12889-018-5772-3.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lee EY, Choi J, Lee S, Choi BY. Objectively measured built environments and cardiovascular diseases in middle-aged and older Korean adults. Int J Environ Res Public Health. 2021;18(4) https://doi.org/10.3390/ijerph18041861.

  69. Sarkar C, Lai KY, Ni MY, Kumari S, Leung GM, Webster C. Liveable residential space, residential density, and hypertension in Hong Kong: a population-based cohort study. PLoS Med. 2021;18(11):e1003824. https://doi.org/10.1371/journal.pmed.1003824.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Corlin L, Lane KJ, Sunderarajan J, et al. Urbanization as a risk factor for aortic stiffness in a cohort in India. PLoS One. 2018;13(8):e0201036. https://doi.org/10.1371/journal.pone.0201036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Braun LM, Rodríguez DA, Evenson KR, Hirsch JA, Moore KA, Diez Roux AV. Walkability and cardiometabolic risk factors: cross-sectional and longitudinal associations from the Multi-Ethnic Study of Atherosclerosis. Health Place. 2016;39:9–17. https://doi.org/10.1016/j.healthplace.2016.02.006.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hall CM, Ram Y. Walk score® and its potential contribution to the study of active transport and walkability: a critical and systematic review. Transp Res D: Transp Environ. 2018;61:310–24. https://doi.org/10.1016/j.trd.2017.12.018.

    Article  Google Scholar 

  73. Bijnens EM, Nawrot TS, Loos RJ, et al. Blood pressure in young adulthood and residential greenness in the early-life environment of twins. Environ Health. 2017;16(1):53. https://doi.org/10.1186/s12940-017-0266-9.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Braziene A, Vencloviene J, Tamosiunas A, Dedele A, Luksiene D, Radisauskas R. The influence of proximity to city parks and major roads on the development of arterial hypertension. Scand J Public Health. 2018;46(6):667–74. https://doi.org/10.1177/1403494817751756.

    Article  PubMed  Google Scholar 

  75. Jimenez MP, Wellenius GA, James P, et al. Associations of types of green space across the life-course with blood pressure and body mass index. Environ Res. 2020:185. https://doi.org/10.1016/j.envres.2020.109411.

  76. Paoin K, Pharino C, Phosri A, et al. Association between greenness and cardiovascular risk factors: results from a large cohort study in Thailand. Environ Res. 2023:220. https://doi.org/10.1016/j.envres.2023.115215.

  77. Paquet C, Coffee NT, Haren MT, et al. Food environment, walkability, and public open spaces are associated with incident development of cardio-metabolic risk factors in a biomedical cohort. Health Place. 2014;28:173–6. https://doi.org/10.1016/j.healthplace.2014.05.001.

    Article  PubMed  Google Scholar 

  78. Tharrey M, Klein O, Bohn T, Malisoux L, Perchoux C. Nine-year exposure to residential greenness and the risk of metabolic syndrome among Luxembourgish adults: a longitudinal analysis of the ORISCAV-Lux cohort study. Health Place. 2023;81:103020. https://doi.org/10.1016/j.healthplace.2023.103020.

    Article  PubMed  Google Scholar 

  79. Wensu Z, Wenjuan W, Fenfen Z, Wen C, Li L. The effects of greenness exposure on hypertension incidence among Chinese oldest-old: a prospective cohort study. Environ Health. 2022;21(1):66. https://doi.org/10.1186/s12940-022-00876-6.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Yang T, Wang J, Xu Z, et al. Associations between greenness and blood pressure and hypertension in Chinese middle-aged and elderly population: a longitudinal study. Environ Res. 2022;212(Pt D):113558. https://doi.org/10.1016/j.envres.2022.113558.

    Article  CAS  PubMed  Google Scholar 

  81. Avellaneda-Gomez C, Vivanco-Hidalgo RM, Olmos S, et al. Air pollution and surrounding greenness in relation to ischemic stroke: a population-based cohort study. Environ Int. 2022:161. https://doi.org/10.1016/j.envint.2022.107147.

  82. Chen H, Burnett Richard T, Bai L, et al. Residential greenness and cardiovascular disease incidence, readmission, and mortality. Environ Health Perspect. 2020;128(8):087005. https://doi.org/10.1289/EHP6161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Crouse DL, Pinault L, Balram A, et al. Urban greenness and mortality in Canada’s largest cities: a national cohort study. Lancet Planet Health. 2017;1(7):e289–97. https://doi.org/10.1016/S2542-5196(17)30118-3.

    Article  PubMed  Google Scholar 

  84. Iyer HS, Valeri L, James P, et al. The contribution of residential greenness to mortality among men with prostate cancer: a registry-based cohort study of Black and White men. Environ Epidemiol. 2020;4(2):e087. https://doi.org/10.1097/EE9.0000000000000087.

  85. James P, Hart Jaime E, Banay Rachel F, Laden F. Exposure to greenness and mortality in a nationwide prospective cohort study of women. Environ Health Perspect. 2016;124(9):1344–52. https://doi.org/10.1289/ehp.1510363.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Liao NS, Van den Eeden SK, Sidney S, et al. Joint associations between neighborhood walkability, greenness, and particulate air pollution on cardiovascular mortality among adults with a history of stroke or acute myocardial infarction. Environ Epidemiol. 2022;6(2) https://doi.org/10.1097/EE9.0000000000000200.

  87. Orioli R, Antonucci C, Scortichini M, et al. Exposure to residential greenness as a predictor of cause-specific mortality and stroke incidence in the Rome longitudinal study. Environ Health Perspect. 2019;127(2):027002. https://doi.org/10.1289/EHP2854.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Paul LA, Hystad P, Burnett RT, et al. Urban green space and the risks of dementia and stroke. Environ Res. 2020;186:109520. https://doi.org/10.1016/j.envres.2020.109520.

    Article  CAS  PubMed  Google Scholar 

  89. Seo S, Choi S, Kim K, Kim SM, Park SM. Association between urban green space and the risk of cardiovascular disease: a longitudinal study in seven Korean metropolitan areas. Environ Int. 2019;125:51–7. https://doi.org/10.1016/j.envint.2019.01.038.

    Article  PubMed  Google Scholar 

  90. Vienneau D, de Hoogh K, Faeh D, et al. More than clean air and tranquillity: residential green is independently associated with decreasing mortality. Environ Int. 2017;108:176–84. https://doi.org/10.1016/j.envint.2017.08.012.

    Article  PubMed  Google Scholar 

  91. Villeneuve PJ, Jerrett MG, Su J, et al. A cohort study relating urban green space with mortality in Ontario, Canada. Environ Res. 2012;115:51–8. https://doi.org/10.1016/j.envres.2012.03.003.

    Article  CAS  PubMed  Google Scholar 

  92. Yitshak-Sade M, Kloog I, Novack V. Do air pollution and neighborhood greenness exposures improve the predicted cardiovascular risk? Environ Int. 2017;107:147–53. https://doi.org/10.1016/j.envint.2017.07.011.

    Article  CAS  PubMed  Google Scholar 

  93. Zijlema WL, Stasinska A, Blake D, et al. The longitudinal association between natural outdoor environments and mortality in 9218 older men from Perth. Western Australia Environ Int. 2019;125:430–6. https://doi.org/10.1016/j.envint.2019.01.075.

    Article  PubMed  Google Scholar 

  94. Chiu M, Rezai M-R, Maclagan Laura C, et al. Moving to a highly walkable neighborhood and incidence of hypertension: a propensity-score matched cohort study. Environ Health Perspect. 2016;124(6):754–60. https://doi.org/10.1289/ehp.1510425.

    Article  CAS  PubMed  Google Scholar 

  95. Jones AC, Chaudhary NS, Patki A, et al. Neighborhood walkability as a predictor of incident hypertension in a national cohort study. Frontiers. Public Health. 2021;9(2) https://doi.org/10.3389/fpubh.2021.611895.

  96. India-Aldana S, Rundle AG, Zeleniuch-Jacquotte A, et al. Neighborhood walkability and mortality in a prospective cohort of women. Epidemiology. 2021;32(6):763–72. https://doi.org/10.1097/EDE.0000000000001406.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Yang Z, Wu M, Lu J, et al. Interaction between walkability and fine particulate matter on risk of ischemic stroke: a prospective cohort study in China. Environ Pollut. 2022;292(Pt B):118482. https://doi.org/10.1016/j.envpol.2021.118482.

    Article  CAS  PubMed  Google Scholar 

  98. Milà C, Ranzani O, Sanchez M, et al. Land-use change and cardiometabolic risk factors in an urbanizing area of South India: a population-based cohort study. Environ Health Perspect. 2020;128(4):047003. https://doi.org/10.1289/EHP5445.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Griffin BA, Eibner C, Bird CE, et al. The relationship between urban sprawl and coronary heart disease in women. Health Place. 2013;20:51–61. https://doi.org/10.1016/j.healthplace.2012.11.003.

    Article  PubMed  Google Scholar 

  100. Villeneuve PJ, Jerrett M, Su JG, Weichenthal S, Sandler DP. Association of residential greenness with obesity and physical activity in a US cohort of women. Environ Res. 2018;160:372–84. https://doi.org/10.1016/j.envres.2017.10.005.

    Article  CAS  PubMed  Google Scholar 

  101. Rindfleisch A, Malter AJ, Ganesan S, Moorman C. Cross-sectional versus longitudinal survey research: concepts, findings, and guidelines. J Market Res. 2008;45(3):261–79. https://doi.org/10.1509/jmkr.45.3.261.

    Article  Google Scholar 

  102. McCormack GR, Giles-Corti B, Bulsara M. The relationship between destination proximity, destination mix and physical activity behaviors. Prev Med. 2008;46(1):33–40. https://doi.org/10.1016/j.ypmed.2007.01.013.

    Article  PubMed  Google Scholar 

  103. Sarkar C, Webster C. Healthy cities of tomorrow: the case for large scale built environment–health studies. J Urban Health. 2017;94(1):4–19. https://doi.org/10.1007/s11524-016-0122-1.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Buzzelli M, Su J. Multi-level modelling in health research: a caution and rejoinder on temporally mismatched data. Soc Sci Med. 2006;62(5):1215–8. https://doi.org/10.1016/j.socscimed.2005.06.056.

    Article  PubMed  Google Scholar 

  105. Ma L, Dill J. Associations between the objective and perceived built environment and bicycling for transportation. J Transp Health. 2015;2(2):248–55. https://doi.org/10.1016/j.jth.2015.03.002.

    Article  Google Scholar 

  106. Clarke P, Ailshire JA, Lantz P. Urban built environments and trajectories of mobility disability: findings from a national sample of community-dwelling American adults (1986–2001). Soc Sci Med. 2009;69(6):964–70. https://doi.org/10.1016/j.socscimed.2009.06.041.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Steptoe A, Kivimäki M. Stress and cardiovascular disease. Nat Rev Cardiol. 2012;9(6):360–70. https://doi.org/10.1038/nrcardio.2012.45.

    Article  CAS  PubMed  Google Scholar 

  108. Yeager R, Riggs DW, DeJarnett N, et al. Association between residential greenness and cardiovascular disease risk. J Am Heart Assoc. 2018;7(24):e009117. https://doi.org/10.1161/JAHA.118.009117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Squillacioti G, Carsin A-E, Bellisario V, Bono R, Garcia-Aymerich J. Multisite greenness exposure and oxidative stress in children. The potential mediating role of physical activity. Environ Res. 2022;209:112857. https://doi.org/10.1016/j.envres.2022.112857.

    Article  CAS  PubMed  Google Scholar 

  110. Jeong A, Eze IC, Vienneau D, et al. Residential greenness-related DNA methylation changes. Environ Int. 2022;158:106945. https://doi.org/10.1016/j.envint.2021.106945.

    Article  CAS  PubMed  Google Scholar 

  111. Barton J, Rogerson M. The importance of greenspace for mental health. BJPsych International. 2017;14(4):79–81. https://doi.org/10.1192/S2056474000002051.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Houlden V, Weich S, Porto de Albuquerque J, Jarvis S, Rees K. The relationship between greenspace and the mental wellbeing of adults: a systematic review. PloS One. 2018;13(9):e0203000. https://doi.org/10.1371/journal.pone.0203000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tamosiunas A, Grazuleviciene R, Luksiene D, et al. Accessibility and use of urban green spaces, and cardiovascular health: findings from a Kaunas cohort study. Environ Health. 2014;13(1):20. https://doi.org/10.1186/1476-069X-13-20.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Dalton AM, Jones AP. Residential neighbourhood greenspace is associated with reduced risk of cardiovascular disease: a prospective cohort study. PloS One. 2020;15(1):e0226524. https://doi.org/10.1371/journal.pone.0226524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. McMorris O, Villeneuve PJ, Su J, Jerrett M. Urban greenness and physical activity in a national survey of Canadians. Environ Res. 2015;137:94–100. https://doi.org/10.1016/j.envres.2014.11.010.

    Article  CAS  PubMed  Google Scholar 

  116. Rundle AG, Sheehan DM, Quinn JW, et al. Using GPS Data to study neighborhood walkability and physical activity. Am J Prev Med. 2016;50(3):e65–72. https://doi.org/10.1016/j.amepre.2015.07.033.

    Article  PubMed  Google Scholar 

  117. Boreham CA, Ferreira I, Twisk JW, Gallagher AM, Savage MJ, Murray LJ. Cardiorespiratory fitness, physical activity, and arterial stiffness. Hypertension. 2004;44(5):721–6. https://doi.org/10.1161/01.HYP.0000144293.40699.9a.

    Article  CAS  PubMed  Google Scholar 

  118. Hegde SM, Solomon SD. Influence of physical activity on hypertension and cardiac structure and function. Curr Hypertens Rep. 2015;17(10):77. https://doi.org/10.1007/s11906-015-0588-3.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Ignarro LJ, Balestrieri ML, Napoli C. Nutrition, physical activity, and cardiovascular disease: An update. Cardiovasc Res. 2007;73(2):326–40. https://doi.org/10.1016/j.cardiores.2006.06.030.

    Article  CAS  PubMed  Google Scholar 

  120. Dhalla NS, Temsah RM, Netticadan T. Role of oxidative stress in cardiovascular diseases. J Hypertens. 2000;18(6): 655–73. Available at: https://journals.lww.com/jhypertension/Abstract/2000/18060/Role_of_oxidative_stress_in_cardiovascular.2.aspx

  121. Rose GA, Khaw K-T, Marmot MG. Rose’s strategy of preventive medicine: the complete original text. New ed. Oxford: Oxford University Press; 2008.

    Book  Google Scholar 

  122. Rose G. Mental disorder and the strategies of prevention. Psychol Med. 1993;23(3):553–5. https://doi.org/10.1017/S0033291700025320.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

C.S. acknowledges support from Hong Kong Research Grant Commission and General Research Fund (GRF grant 17613220) and the US National Academy of Medicine — The University of Hong Kong Fellowship in Global Health Leadership.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ka Yan Lai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 506 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, K.Y., Webster, C., Gallacher, J.E. et al. Associations of Urban Built Environment with Cardiovascular Risks and Mortality: a Systematic Review. J Urban Health 100, 745–787 (2023). https://doi.org/10.1007/s11524-023-00764-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11524-023-00764-5

Keywords

Navigation