Skip to main content

Advertisement

Log in

Current State of Targeted Therapy in Adult Langerhans Cell Histiocytosis and Erdheim–Chester Disease

  • Review Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

The mitogen-activated protein kinase (MAPK) pathway is a key driver in many histiocytic disorders, including Langerhans cell histiocytosis (LCH) and Erdheim–Chester disease (ECD). This has led to successful and promising treatment with targeted therapies, including BRAF inhibitors and MEK inhibitors. Additional novel inhibitors have also demonstrated encouraging results. Nevertheless, there are several problems concerning targeted therapy that need to be addressed. These include, among others, incomplete responsiveness and the emergence of resistance to BRAF inhibition as observed in other BRAF-mutant malignancies. Drug resistance and relapse after treatment interruption remain problems with current targeted therapies. Targeted therapy does not seem to eradicate the mutated clone, leading to inevitable relapes, which is a huge challenge for the future. More fundamental research and clinical trials are needed to address these issues and to develop improved targeted therapies that can overcome resistance and achieve long-lasting remissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Emile JF, Abla O, Fraitag S, et al. Revised classification of histiocytoses and neoplasms of the macrophage-dendritic cell lineages. Blood. 2016;127(22):2672–81. https://doi.org/10.1182/blood-2016-01-690636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Goyal G, Tazi A, Go RS, et al. International expert consensus recommendations for the diagnosis and treatment of Langerhans cell histiocytosis in adults. Blood. 2022;139(17):2601–21. https://doi.org/10.1182/blood.2021014343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tazi A, de Margerie C, Naccache JM, et al. The natural history of adult pulmonary Langerhans cell histiocytosis: a prospective multicentre study. Orphanet J Rare Dis. 2015;10:30. https://doi.org/10.1186/s13023-015-0249-2.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vassallo R, Ryu JH, Schroeder DR, et al. Clinical outcomes of pulmonary Langerhans’-cell histiocytosis in adults. N Engl J Med. 2002;346(7):484–90. https://doi.org/10.1056/NEJMoa012087.

    Article  PubMed  Google Scholar 

  5. Makras P, Yavropoulou MP, Chatziioannou SN, et al. Efficacy of denosumab monotherapy among adults with Langerhans cell histiocytosis: a prospective clinical trial. Am J Hematol. 2023;98(7):E168–71. https://doi.org/10.1002/ajh.26936.

    Article  CAS  PubMed  Google Scholar 

  6. Makras P, Tsoli M, Anastasilakis AD, et al. Denosumab for the treatment of adult multisystem Langerhans cell histiocytosis. Metabolism. 2017;69:107–11. https://doi.org/10.1016/j.metabol.2017.01.004.

    Article  CAS  PubMed  Google Scholar 

  7. Cao XX, Li J, Zhao AL, et al. Methotrexate and cytarabine for adult patients with newly diagnosed Langerhans cell histiocytosis: a single arm, single center, prospective phase 2 study. Am J Hematol. 2020;95(9):E235–8. https://doi.org/10.1002/ajh.25864.

    Article  CAS  PubMed  Google Scholar 

  8. Chang L, Lang M, Lin H, et al. Phase 2 study using low dose cytarabine for adult patients with newly diagnosed Langerhans cell histiocytosis. Leukemia. 2024;38(4):803–9. https://doi.org/10.1038/s41375-024-02174-1.

    Article  CAS  PubMed  Google Scholar 

  9. Duan MH, Han X, Li J, et al. Comparison of vindesine and prednisone and cyclophosphamide, etoposide, vindesine, and prednisone as first-line treatment for adult Langerhans cell histiocytosis: a single-center retrospective study. Leuk Res. 2016;42:43–6. https://doi.org/10.1016/j.leukres.2016.01.012.

    Article  CAS  PubMed  Google Scholar 

  10. Goyal G, Abeykoon JP, Hu M, et al. Single-agent cladribine as an effective front-line therapy for adults with Langerhans cell histiocytosis. Am J Hematol. 2021;96(5):E146–50. https://doi.org/10.1002/ajh.26119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zinn DJ, Grimes AB, Lin H, et al. Hydroxyurea: a new old therapy for Langerhans cell histiocytosis. Blood. 2016;128(20):2462–5. https://doi.org/10.1182/blood-2016-06-721993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sakamoto K, Kikuchi K, Sako M, et al. Pilot study to estimate the safety and effectiveness of hydroxyurea and methotrexate recurrent Langerhans cell histiocytosis (LCH-HU-pilot). Medicine (Baltimore). 2022;101(50): e31475. https://doi.org/10.1097/md.0000000000031475.

    Article  CAS  PubMed  Google Scholar 

  13. Goyal G, Shah MV, Call TG, et al. Clinical and radiologic responses to cladribine for the treatment of Erdheim-Chester disease. JAMA Oncol. 2017;3(9):1253–6. https://doi.org/10.1001/jamaoncol.2017.0041.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Haroche J, Amoura Z, Trad SG, et al. Variability in the efficacy of interferon-alpha in Erdheim-Chester disease by patient and site of involvement: results in eight patients. Arthritis Rheum. 2006;54(10):3330–6. https://doi.org/10.1002/art.22165.

    Article  CAS  PubMed  Google Scholar 

  15. Goyal G, Heaney ML, Collin M, et al. Erdheim-Chester disease: consensus recommendations for evaluation, diagnosis, and treatment in the molecular era. Blood. 2020;135(22):1929–45. https://doi.org/10.1182/blood.2019003507.

    Article  CAS  PubMed  Google Scholar 

  16. Haroche J, Charlotte F, Arnaud L, et al. High prevalence of BRAF V600E mutations in Erdheim-Chester disease but not in other non-Langerhans cell histiocytoses. Blood. 2012;120(13):2700–3. https://doi.org/10.1182/blood-2012-05-430140.

    Article  CAS  PubMed  Google Scholar 

  17. Badalian-Very G, Vergilio JA, Degar BA, et al. Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood. 2010;116(11):1919–23. https://doi.org/10.1182/blood-2010-04-279083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chakraborty R, Hampton OA, Shen X, et al. Mutually exclusive recurrent somatic mutations in MAP2K1 and BRAF support a central role for ERK activation in LCH pathogenesis. Blood. 2014;124(19):3007–15. https://doi.org/10.1182/blood-2014-05-577825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Durham BH, Lopez Rodrigo E, Picarsic J, et al. Activating mutations in CSF1R and additional receptor tyrosine kinases in histiocytic neoplasms. Nat Med. 2019;25(12):1839–42. https://doi.org/10.1038/s41591-019-0653-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Berres ML, Lim KP, Peters T, et al. BRAF-V600E expression in precursor versus differentiated dendritic cells defines clinically distinct LCH risk groups. J Exp Med. 2014;211(4):669–83. https://doi.org/10.1084/jem.20130977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen J, Zhao AL, Duan MH, et al. Diverse kinase alterations and myeloid-associated mutations in adult histiocytosis. Leukemia. 2022;36(2):573–6. https://doi.org/10.1038/s41375-021-01439-3.

    Article  CAS  PubMed  Google Scholar 

  22. Brown NA, Furtado LV, Betz BL, et al. High prevalence of somatic MAP2K1 mutations in BRAF V600E-negative Langerhans cell histiocytosis. Blood. 2014;124(10):1655–8. https://doi.org/10.1182/blood-2014-05-577361.

    Article  CAS  PubMed  Google Scholar 

  23. Nelson DS, van Halteren A, Quispel WT, et al. MAP2K1 and MAP3K1 mutations in Langerhans cell histiocytosis. Genes Chromosomes Cancer. 2015;54(6):361–8. https://doi.org/10.1002/gcc.22247.

    Article  CAS  PubMed  Google Scholar 

  24. Haroche J, Cohen-Aubart F, Amoura Z. Erdheim-Chester disease. Blood. 2020;135(16):1311–8. https://doi.org/10.1182/blood.2019002766.

    Article  PubMed  Google Scholar 

  25. Lee LH, Gasilina A, Roychoudhury J, et al. Real-time genomic profiling of histiocytoses identifies early-kinase domain BRAF alterations while improving treatment outcomes. JCI Insight. 2017;2(3): e89473. https://doi.org/10.1172/jci.insight.89473.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mourah S, How-Kit A, Meignin V, et al. Recurrent NRAS mutations in pulmonary Langerhans cell histiocytosis. Eur Respir J. 2016;47(6):1785–96. https://doi.org/10.1183/13993003.01677-2015.

    Article  CAS  PubMed  Google Scholar 

  27. Nelson DS, Quispel W, Badalian-Very G, et al. Somatic activating ARAF mutations in Langerhans cell histiocytosis. Blood. 2014;123(20):3152–5. https://doi.org/10.1182/blood-2013-06-511139.

    Article  CAS  PubMed  Google Scholar 

  28. McClain KL, Bigenwald C, Collin M, et al. Histiocytic disorders. Nat Rev Dis Prim. 2021;7(1):73. https://doi.org/10.1038/s41572-021-00307-9.

    Article  PubMed  Google Scholar 

  29. Solit DB, Rosen N. Resistance to BRAF inhibition in melanomas. N Engl J Med. 2011;364(8):772–4. https://doi.org/10.1056/NEJMcibr1013704.

    Article  CAS  PubMed  Google Scholar 

  30. Staudinger JZJ, Burgess R, Elledge SJ, Olson EN. PICK1: a perinuclear binding protein and substrate for protein kinase C isolated by the yeast two-hybrid system. J Cell Biol. 1995;128(3):263–71. https://doi.org/10.1083/jcb.128.3.263.

    Article  CAS  PubMed  Google Scholar 

  31. Cheung LW, Hennessy BT, Li J, et al. High frequency of PIK3R1 and PIK3R2 mutations in endometrial cancer elucidates a novel mechanism for regulation of PTEN protein stability. Cancer Discov. 2011;1(2):170–85. https://doi.org/10.1158/2159-8290.CD-11-0039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Héritier S, Saffroy R, Radosevic-Robin N, et al. Common cancer-associated PIK3CA activating mutations rarely occur in Langerhans cell histiocytosis. Blood. 2015;125(15):2448–9. https://doi.org/10.1182/blood-2015-01-625491.

    Article  PubMed  Google Scholar 

  33. Kobayashi M, Tojo A. Langerhans cell histiocytosis in adults: advances in pathophysiology and treatment. Cancer Sci. 2018;109(12):3707–13. https://doi.org/10.1111/cas.13817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aubart FC, Roos-Weil D, Armand M, et al. High frequency of clonal hematopoiesis in ErdheimChester disease. Blood. 2021;137(4):485–92. https://doi.org/10.1182/blood.2020005101.

    Article  CAS  Google Scholar 

  35. McGinnis LM, Nybakken G, Ma L, et al. Frequency of MAP2K1, TP53, and U2AF1 mutations in BRAF-mutated Langerhans cell histiocytosis: further characterizing the genomic landscape of LCH. Am J Surg Pathol. 2018;42(7):885–90. https://doi.org/10.1097/pas.0000000000001057.

    Article  PubMed  Google Scholar 

  36. Yokokawa Y, Taki T, Chinen Y, et al. Unique clonal relationship between T-cell acute lymphoblastic leukemia and subsequent Langerhans cell histiocytosis with TCR rearrangement and NOTCH1 mutation. Genes Chromosomes Cancer. 2015;54(7):409–17. https://doi.org/10.1002/gcc.22252.

    Article  CAS  PubMed  Google Scholar 

  37. Poulikakos PI, Zhang C, Bollag G, et al. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature. 2010;464(7287):427–30. https://doi.org/10.1038/nature08902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Diamond EL, Durham BH, Haroche J, et al. Diverse and targetable kinase alterations drive histiocytic neoplasms. Cancer Discov. 2016;6(2):154–65. https://doi.org/10.1158/2159-8290.CD-15-0913.

    Article  CAS  PubMed  Google Scholar 

  39. Tan ACS, Yzer S, Atebara N, et al. Three cases of Erdheim-Chester disease with intraocular manifestations: imaging and histopathology findings of a rare entity. Am J Ophthalmol. 2017;176:141–7. https://doi.org/10.1016/j.ajo.2017.01.017.

    Article  PubMed  Google Scholar 

  40. Baumann M, Cerny T, Sommacal A, et al. Langerhans cell histiocytosis with central nervous system involvement–complete response to 2-chlorodeoxyadenosine after failure of tyrosine kinase inhibitor therapies with sorafenib and imatinib. Hematol Oncol. 2012;30(2):101–4. https://doi.org/10.1002/hon.1005.

    Article  CAS  PubMed  Google Scholar 

  41. Lito P, Rosen N, Solit DB. Tumor adaptation and resistance to RAF inhibitors. Nat Med. 2013;19(11):1401–9. https://doi.org/10.1038/nm.3392.

    Article  CAS  PubMed  Google Scholar 

  42. Haroche J, Cohen-Aubart F, Emile JF, et al. Dramatic efficacy of vemurafenib in both multisystemic and refractory Erdheim-Chester disease and Langerhans cell histiocytosis harboring the BRAF V600E mutation. Blood. 2013;121(9):1495–500. https://doi.org/10.1182/blood-2012-07-446286.

    Article  CAS  PubMed  Google Scholar 

  43. Haroche J, Cohen-Aubart F, Emile JF, et al. Reproducible and sustained efficacy of targeted therapy with vemurafenib in patients with BRAF(V600E)-mutated Erdheim-Chester disease. J Clin Oncol. 2015;33(5):411–8. https://doi.org/10.1200/jco.2014.57.1950.

    Article  CAS  PubMed  Google Scholar 

  44. Hyman DM, Diamond EL, Vibat CR, et al. Prospective blinded study of BRAFV600E mutation detection in cell-free DNA of patients with systemic histiocytic disorders. Cancer Discov. 2015;5(1):64–71. https://doi.org/10.1158/2159-8290.CD-14-0742.

    Article  CAS  PubMed  Google Scholar 

  45. Heidorn SJ, Milagre C, Whittaker S, et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell. 2010;140(2):209–21. https://doi.org/10.1016/j.cell.2009.12.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hatzivassiliou G, Song K, Yen I, et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature. 2010;464(7287):431–5. https://doi.org/10.1038/nature08833.

    Article  CAS  PubMed  Google Scholar 

  47. Shi H, He H, Cui L, et al. Transcriptomic landscape of circulating mononuclear phagocytes in Langerhans cell histiocytosis at the single-cell level. Blood. 2021;138(14):1237–48. https://doi.org/10.1182/blood.2020009064.

    Article  CAS  PubMed  Google Scholar 

  48. Delord JP, Robert C, Nyakas M, et al. Phase I dose-escalation and -expansion study of the BRAF inhibitor encorafenib (LGX818) in metastatic BRAF-mutant melanoma. Clin Cancer Res. 2017;23(18):5339–48. https://doi.org/10.1158/1078-0432.Ccr-16-2923.

    Article  CAS  PubMed  Google Scholar 

  49. Wada F, Hiramoto N, Yamashita D, et al. Dramatic response to encorafenib in a patient with Erdheim-Chester disease harboring the BRAF(V600E) mutation. Am J Hematol. 2021;96(8):E295–8. https://doi.org/10.1002/ajh.26232.

    Article  CAS  PubMed  Google Scholar 

  50. Aaroe A, Kurzrock R, Goyal G, et al. Successful Treatment of non-Langerhans cell histiocytosis with the MEK inhibitor trametinib: a multicenter analysis. Blood Adv. 2023. https://doi.org/10.1182/bloodadvances.2022009013.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Diamond EL, Durham BH, Ulaner GA, et al. Efficacy of MEK inhibition in patients with histiocytic neoplasms. Nature. 2019;567(7749):521–4. https://doi.org/10.1038/s41586-019-1012-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gao Y, Chang MT, McKay D, et al. Allele-specific mechanisms of activation of MEK1 mutants determine their properties. Cancer Discov. 2018;8(5):648–61. https://doi.org/10.1158/2159-8290.CD-17-1452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ahronian LG, Sennott EM, Van Allen EM, et al. Clinical acquired resistance to RAF inhibitor combinations in BRAF-mutant colorectal cancer through MAPK pathway alterations. Cancer Discov. 2015;5(4):358–67. https://doi.org/10.1158/2159-8290.Cd-14-1518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hazar-Rethinam M, Kleyman M, Han GC, et al. Convergent therapeutic strategies to overcome the heterogeneity of acquired resistance in BRAF(V600E) colorectal cancer. Cancer Discov. 2018;8(4):417–27. https://doi.org/10.1158/2159-8290.Cd-17-1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gilmartin AG, Bleam MR, Groy A, et al. GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clin Cancer Res. 2011;17(5):989–1000. https://doi.org/10.1158/1078-0432.Ccr-10-2200.

    Article  CAS  PubMed  Google Scholar 

  56. Mizuno S, Ikegami M, Koyama T, et al. High-throughput functional evaluation of MAP2K1 variants in cancer. Mol Cancer Ther. 2023;22(2):227–39. https://doi.org/10.1158/1535-7163.MCT-22-0302.

    Article  CAS  PubMed  Google Scholar 

  57. Hanrahan AJ, Sylvester BE, Chang MT, et al. Leveraging systematic functional analysis to benchmark an in silico framework distinguishes driver from passenger MEK mutants in cancer. Cancer Res. 2020;80(19):4233–43. https://doi.org/10.1158/0008-5472.CAN-20-0865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shah NP, Kasap C, Weier C, et al. Transient potent BCR-ABL inhibition is sufficient to commit chronic myeloid leukemia cells irreversibly to apoptosis. Cancer Cell. 2008;14(6):485–93. https://doi.org/10.1016/j.ccr.2008.11.001.

    Article  CAS  PubMed  Google Scholar 

  59. Papapanagiotou M, Griewank KG, Hillen U, et al. Trametinib-induced remission of an MEK1-mutated langerhans cell histiocytosis. JCO Precis Oncol. 2017;1:1–5. https://doi.org/10.1200/po.16.00070.

    Article  PubMed  Google Scholar 

  60. Roeser A, Jouenne F, Vercellino L, et al. Dramatic response after switching MEK inhibitors in a patient with refractory mixed histiocytosis. J Hematol. 2022;11(5):185–9. https://doi.org/10.14740/jh1030.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lian T, Li C, Wang H. Trametinib in the treatment of multiple malignancies harboring MEK1 mutations. Cancer Treat Rev. 2019;81: 101907. https://doi.org/10.1016/j.ctrv.2019.101907.

    Article  CAS  PubMed  Google Scholar 

  62. Wagle N, Van Allen EM, Treacy DJ, et al. MAP kinase pathway alterations in BRAF-mutant melanoma patients with acquired resistance to combined RAF/MEK inhibition. Cancer Discov. 2014;4(1):61–8. https://doi.org/10.1158/2159-8290.CD-13-0631.

    Article  CAS  PubMed  Google Scholar 

  63. Durham BH, Hershkovitz-Rokah O, Abdel-Wahab O, et al. Mutant PIK3CA is a targetable driver alteration in histiocytic neoplasms. Blood Adv. 2023;7(23):7319–28. https://doi.org/10.1182/bloodadvances.2022009349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Arceci RJ, Allen CE, Dunkel IJ, et al. A phase IIa study of afuresertib, an oral pan-AKT inhibitor, in patients with Langerhans cell histiocytosis. Pediatr Blood Cancer. 2017. https://doi.org/10.1002/pbc.26325.

    Article  PubMed  Google Scholar 

  65. Dumble M, Crouthamel MC, Zhang SY, et al. Discovery of novel AKT inhibitors with enhanced anti-tumor effects in combination with the MEK inhibitor. PLoS ONE. 2014;9(6): e100880. https://doi.org/10.1371/journal.pone.0100880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gianfreda D, Nicastro M, Galetti M, et al. Sirolimus plus prednisone for Erdheim-Chester disease: an open-label trial. Blood. 2015;126(10):1163–71. https://doi.org/10.1182/blood-2015-01-620377.

    Article  CAS  PubMed  Google Scholar 

  67. Pegoraro FMV, Peyronel F, Westenend PJ, Hendriksz TR, Roperto RM, Palumbo AA, Sieni E, Romagnani P, van Bommel EFH, Vaglio A. Long term follow up of mTOR inhibition for Erdheim-Chester disease. Blood. 2020;135(22):1994–7. https://doi.org/10.1083/jcb.128.3.263.

    Article  PubMed  Google Scholar 

  68. Abeykoon JP, Lasho TL, Dasari S, et al. Sustained, complete response to pexidartinib in a patient with CSF1R-mutated Erdheim-Chester disease. Am J Hematol. 2022;97(3):293–302. https://doi.org/10.1002/ajh.26441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Goyal G, Parikh R, Richman J, et al. Spectrum of second primary malignancies and cause-specific mortality in pediatric and adult Langerhans cell histiocytosis. Leuk Res. 2023;126: 107032. https://doi.org/10.1016/j.leukres.2023.107032.

    Article  PubMed  Google Scholar 

  70. Papo M, Diamond EL, Cohen-Aubart F, et al. High prevalence of myeloid neoplasms in adults with non-Langerhans cell histiocytosis. Blood. 2017;130(8):1007–13. https://doi.org/10.1182/blood-2017-01-761718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bonnet P, Chasset F, Moguelet P, et al. Erdheim-Chester disease associated with chronic myelomonocytic leukemia harboring the same clonal mutation. Haematologica. 2019;104(11):e530–3. https://doi.org/10.3324/haematol.2019.223552.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Milne P, Bigley V, Bacon CM, et al. Hematopoietic origin of Langerhans cell histiocytosis and Erdheim-Chester disease in adults. Blood. 2017;130(2):167–75. https://doi.org/10.1182/blood-2016-12-757823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Konstantinou MP, Lucas P, Uthurriague C, et al. Langerhans cell histiocytosis associated with chronic myelomonocytic leukaemia both harbouring the same BRAF V600E mutation: efficacy of vemurafenib. J Eur Acad Dermatol Venereol. 2021;35(2):e120–1. https://doi.org/10.1111/jdv.16850.

    Article  CAS  PubMed  Google Scholar 

  74. Abdel-Wahab O, Klimek VM, Gaskell AA, et al. Efficacy of intermittent combined RAF and MEK inhibition in a patient with concurrent BRAF- and NRAS-mutant malignancies. Cancer Discov. 2014;4(5):538–45. https://doi.org/10.1158/2159-8290.Cd-13-1038.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Yao Z, Gao Y, Su W, et al. RAF inhibitor PLX8394 selectively disrupts BRAF dimers and RAS-independent BRAF-mutant-driven signaling. Nat Med. 2019;25(2):284–91. https://doi.org/10.1038/s41591-018-0274-5.

    Article  CAS  PubMed  Google Scholar 

  76. Nordmann TM, Juengling FD, Recher M, et al. Trametinib after disease reactivation under dabrafenib in Erdheim-Chester disease with both BRAF and KRAS mutations. Blood. 2017;129(7):879–82. https://doi.org/10.1182/blood-2016-09-740217.

    Article  CAS  PubMed  Google Scholar 

  77. Nazarian R, Shi H, Wang Q, et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature. 2010;468(7326):973–7. https://doi.org/10.1038/nature09626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chakraborty R, Burke TM, Hampton OA, et al. Alternative genetic mechanisms of BRAF activation in Langerhans cell histiocytosis. Blood. 2016;128(21):2533–7. https://doi.org/10.1182/blood-2016-08-733790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Héritier S, Hélias-Rodzewicz Z, Chakraborty R, et al. New somatic BRAF splicing mutation in Langerhans cell histiocytosis. Mol Cancer. 2017;16(1):115. https://doi.org/10.1186/s12943-017-0690-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang C, Spevak W, Zhang Y, et al. RAF inhibitors that evade paradoxical MAPK pathway activation. Nature. 2015;526(7574):583–6. https://doi.org/10.1038/nature14982.

    Article  CAS  PubMed  Google Scholar 

  81. Whittaker SR, Cowley GS, Wagner S, et al. Combined pan-RAF and MEK inhibition overcomes multiple resistance mechanisms to selective RAF inhibitors. Mol Cancer Ther. 2015;14(12):2700–11. https://doi.org/10.1158/1535-7163.Mct-15-0136-t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Peng SB, Henry JR, Kaufman MD, et al. Inhibition of RAF isoforms and active dimers by LY3009120 leads to anti-tumor activities in RAS or BRAF mutant cancers. Cancer Cell. 2015;28(3):384–98. https://doi.org/10.1016/j.ccell.2015.08.002.

    Article  CAS  PubMed  Google Scholar 

  83. Jain P, Surrey LF, Straka J, et al. BRAF fusions in pediatric histiocytic neoplasms define distinct therapeutic responsiveness to RAF paradox breakers. Pediatr Blood Cancer. 2021;68(6): e28933. https://doi.org/10.1002/pbc.28933.

    Article  CAS  PubMed  Google Scholar 

  84. Desai J, Gan H, Barrow C, et al. Phase I, Open-label, dose-escalation/dose-expansion study of lifirafenib (BGB-283), an RAF family kinase inhibitor, in patients with solid tumors. J Clin Oncol. 2020;38(19):2140–50. https://doi.org/10.1200/jco.19.02654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Okaniwa M, Hirose M, Arita T, et al. Discovery of a selective kinase inhibitor (TAK-632) targeting pan-RAF inhibition: design, synthesis, and biological evaluation of C-7-substituted 1,3-benzothiazole derivatives. J Med Chem. 2013;56(16):6478–94. https://doi.org/10.1021/jm400778d.

    Article  CAS  PubMed  Google Scholar 

  86. Gunderwala AY, Nimbvikar AA, Cope NJ, et al. Development of allosteric BRAF peptide inhibitors targeting the dimer interface of BRAF. ACS Chem Biol. 2019;14(7):1471–80. https://doi.org/10.1021/acschembio.9b00191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Beneker CM, Rovoli M, Kontopidis G, et al. Design and synthesis of type-IV inhibitors of BRAF kinase that block dimerization and overcome paradoxical MEK/ERK activation. J Med Chem. 2019;62(8):3886–97. https://doi.org/10.1021/acs.jmedchem.8b01288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Germann UA, Furey BF, Markland W, et al. Targeting the MAPK signaling pathway in cancer: promising preclinical activity with the novel selective ERK1/2 inhibitor BVD-523 (ulixertinib). Mol Cancer Ther. 2017;16(11):2351–63. https://doi.org/10.1158/1535-7163.Mct-17-0456.

    Article  CAS  PubMed  Google Scholar 

  89. Kopetz S, Grothey A, Yaeger R, et al. Encorafenib, binimetinib, and cetuximab in BRAF V600E-mutated colorectal cancer. N Engl J Med. 2019;381(17):1632–43. https://doi.org/10.1056/NEJMoa1908075.

    Article  CAS  PubMed  Google Scholar 

  90. Mitchell J, Kelly J, Kvedaraite E, et al. Foxp3(+) Tregs from Langerhans cell histiocytosis lesions co-express CD56 and have a definitively regulatory capacity. Clin Immunol. 2020;215: 108418. https://doi.org/10.1016/j.clim.2020.108418.

    Article  CAS  PubMed  Google Scholar 

  91. Egeler RM, Favara BE, van Meurs M, et al. Differential In situ cytokine profiles of Langerhans-like cells and T cells in Langerhans cell histiocytosis: abundant expression of cytokines relevant to disease and treatment. Blood. 1999;94(12):4195–201.

    CAS  PubMed  Google Scholar 

  92. Mitchell J, Kvedaraite E, von Bahr GT, et al. Plasma signaling factors in patients with Langerhans cell histiocytosis (LCH) correlate with relative frequencies of LCH cells and T cells within lesions. Front Pediatr. 2022;10: 872859. https://doi.org/10.3389/fped.2022.872859.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zeng K, Wang Z, Ohshima K, et al. BRAF V600E mutation correlates with suppressive tumor immune microenvironment and reduced disease-free survival in Langerhans cell histiocytosis. Oncoimmunology. 2016;5(7): e1185582. https://doi.org/10.1080/2162402X.2016.1185582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Crowley E, Di Nicolantonio F, Loupakis F, et al. Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol. 2013;10(8):472–84. https://doi.org/10.1038/nrclinonc.2013.110.

    Article  CAS  PubMed  Google Scholar 

  95. Schwentner R, Kolenova A, Jug G, et al. Longitudinal assessment of peripheral blood BRAFV600E levels in patients with Langerhans cell histiocytosis. Pediatr Res. 2019;85(6):856–64. https://doi.org/10.1038/s41390-018-0238-y.

    Article  CAS  PubMed  Google Scholar 

  96. Heritier S, Helias-Rodzewicz Z, Lapillonne H, et al. Circulating cell-free BRAF(V600E) as a biomarker in children with Langerhans cell histiocytosis. Br J Haematol. 2017;178(3):457–67. https://doi.org/10.1111/bjh.14695.

    Article  CAS  PubMed  Google Scholar 

  97. Evseev D, Kalinina I, Raykina E, et al. Vemurafenib provides a rapid and robust clinical response in pediatric Langerhans cell histiocytosis with the BRAF V600E mutation but does not eliminate low-level minimal residual disease per ddPCR using cell-free circulating DNA. Int J Hematol. 2021;114(6):725–34. https://doi.org/10.1007/s12185-021-03205-8.

    Article  CAS  PubMed  Google Scholar 

  98. Vemurafenib for refractory multisystem Langerhans cell histiocytosis in childrenan international observational study. J Clin Oncol. 37(31):2857–65. https://doi.org/10.1200/JCO.19.00456.

  99. Cohen Aubart F, Emile JF, Carrat F, et al. Targeted therapies in 54 patients with Erdheim-Chester disease, including follow-up after interruption (the LOVE study). Blood. 2017;130(11):1377–80. https://doi.org/10.1182/blood-2017-03-771873.

    Article  CAS  PubMed  Google Scholar 

  100. Reiner AS, Durham BH, Yabe M, et al. Outcomes after interruption of targeted therapy in patients with histiocytic neoplasms. Br J Haematol. 2023. https://doi.org/10.1111/bjh.18964.

    Article  PubMed  Google Scholar 

  101. Bhatia A, Ulaner G, Rampal R, et al. Single-agent dabrafenib for BRAF(V600E)-mutated histiocytosis. Haematologica. 2018;103(4):e177–80. https://doi.org/10.3324/haematol.2017.185298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Diamond EL, Subbiah V, Lockhart AC, et al. Vemurafenib for BRAF V600-mutant Erdheim-Chester disease and Langerhans cell histiocytosis: analysis of data from the histology-independent, phase 2, open-label VE-BASKET study. JAMA Oncol. 2018;4(3):384–8. https://doi.org/10.1001/jamaoncol.2017.5029.

    Article  PubMed  Google Scholar 

  103. Hazim AZ, Ruan GJ, Ravindran A, et al. Efficacy of BRAF-inhibitor therapy in BRAF(V600E)-mutated adult Langerhans cell histiocytosis. Oncologist. 2020;25(12):1001–4. https://doi.org/10.1002/onco.13541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-xin Cao.

Ethics declarations

Funding

This study was supported by grants from institutional research funding provided by the Beijing Natural Science Haidian frontier Foundation (Grant no. L222081 to Cao XX) and the National High Level Hospital Clinical Research Funding (2022-PUMCH-A-193).

Conflict of interest

He Lin, Xin-xin Cao declare that they have no conflicts of interest that might be relevant to the contents of this manuscript.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data, materials, and code

Not applicable.

Authors' contributions

H.L. and X.C. wrote the main manuscript text. H.L. prepared figures and tables. X.C. reviewed the manuscript and provided helpful comments. All authors read and approved the final manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Cao, Xx. Current State of Targeted Therapy in Adult Langerhans Cell Histiocytosis and Erdheim–Chester Disease. Targ Oncol 19, 691–703 (2024). https://doi.org/10.1007/s11523-024-01080-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-024-01080-x