Skip to main content
Log in

Therapies Targeting the Tumor Stroma and the VEGF/VEGFR Axis in Pancreatic Ductal Adenocarcinoma: a Systematic Review and Meta-Analysis

  • Systematic Review
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Abundant tumor stroma is a hallmark of pancreatic ductal adenocarcinoma (PDAC), and is suggested to play a role in the resistance of this deadly disease to systemic treatment. Despite promising results from preclinical studies, clinical trials with therapies targeting the tumor stroma and the vascular endothelial growth factor (VEGF) and its receptor VEGFR yielded conflicting results. With this systematic review and meta-analysis, we aim to summarize the existing evidence in this important field with a special focus on anti-VEGF/VEGFR therapy. A total of 24 clinical studies were included in the qualitative synthesis, and six randomized controlled trials (RCTs) investigating anti-VEGF/VEGFR agents were further included in the quantitative synthesis. The qualitative synthesis revealed a treatment advantage of combined therapy with nab-paclitaxel, while the meta-analysis on anti-VEGF/VEGFR drugs demonstrated marginal improvement of objective response rates and progression-free survival, but not overall survival. Stroma targeting is a promising and rapidly-developing treatment strategy in PDAC. However, novel drugs balancing stroma depletion and modulation are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10–29. https://doi.org/10.3322/caac.20138.

    Article  PubMed  Google Scholar 

  2. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74(11):2913–21. https://doi.org/10.1158/0008-5472.CAN-14-0155.

    Article  PubMed  CAS  Google Scholar 

  3. Quaresma M, Coleman MP, Rachet B. 40-year trends in an index of survival for all cancers combined and survival adjusted for age and sex for each cancer in England and Wales, 1971-2011: a population-based study. Lancet. 2015;385(9974):1206–18. https://doi.org/10.1016/S0140-6736(14)61396-9.

    Article  PubMed  Google Scholar 

  4. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30. https://doi.org/10.3322/caac.21332.

    Article  PubMed  Google Scholar 

  5. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  PubMed  CAS  Google Scholar 

  6. Xu Z, Pothula SP, Wilson JS, Apte MV. Pancreatic cancer and its stroma: a conspiracy theory. World J Gastroenterol. 2014;20(32):11216–29. https://doi.org/10.3748/wjg.v20.i32.11216.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell. 2012;21(3):418–29. https://doi.org/10.1016/j.ccr.2012.01.007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, et al. Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 2009;324(5933):1457–61. https://doi.org/10.1126/science.1171362.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Jacobetz MA, Chan DS, Neesse A, Bapiro TE, Cook N, Frese KK, et al. Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut. 2013;62(1):112–20. https://doi.org/10.1136/gutjnl-2012-302529.

    Article  PubMed  CAS  Google Scholar 

  10. Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA, et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 2014;25(6):735–47. https://doi.org/10.1016/j.ccr.2014.04.021.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Lee JJ, Perera RM, Wang H, Wu DC, Liu XS, Han S, et al. Stromal response to hedgehog signaling restrains pancreatic cancer progression. Proc Natl Acad Sci U S A. 2014;111(30):E3091–100. https://doi.org/10.1073/pnas.1411679111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Infinity Reports Update from Phase 2 Study of Saridegib Plus Gemcitabine in Patients with Metastatic Pancreatic Cancer. http://www.businesswire.com/news/home/20120127005146/en/Infinity-Reports-Update-Phase-2-Study-Saridegib. Accessed 11 April 2017.

  13. Ene-Obong A, Clear AJ, Watt J, Wang J, Fatah R, Riches JC, et al. Activated pancreatic stellate cells sequester CD8+ T cells to reduce their infiltration of the juxtatumoral compartment of pancreatic ductal adenocarcinoma. Gastroenterology. 2013;145(5):1121–32. https://doi.org/10.1053/j.gastro.2013.07.025.

    Article  PubMed  CAS  Google Scholar 

  14. Vonderheide RH, Bajor DL, Winograd R, Evans RA, Bayne LJ, Beatty GL. CD40 immunotherapy for pancreatic cancer. Cancer Immunol Immunother. 2013;62(5):949–54. https://doi.org/10.1007/s00262-013-1427-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Eriksson E, Milenova I, Wenthe J, Stahle M, Leja-Jarblad J, Ullenhag G, et al. Shaping the tumor stroma and sparking immune activation by CD40 and 4-1BB signaling induced by an armed oncolytic virus. Clin Cancer Res. 2017;23(19):5846–57. https://doi.org/10.1158/1078-0432.CCR-17-0285.

    Article  PubMed  CAS  Google Scholar 

  16. Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science. 2011;331(6024):1612–6. https://doi.org/10.1126/science.1198443.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Buchler P, Reber HA, Ullrich A, Shiroiki M, Roth M, Buchler MW, et al. Pancreatic cancer growth is inhibited by blockade of VEGF-RII. Surgery. 2003;134(5):772–82. https://doi.org/10.1016/S0039-6060(03)00296-4.

    Article  PubMed  Google Scholar 

  18. Tomasello G, Petrelli F, Ghidini M, Russo A, Passalacqua R, Barni S. FOLFOXIRI plus bevacizumab as conversion therapy for patients with initially Unresectable metastatic colorectal Cancer: a systematic review and pooled analysis. JAMA Oncol. 2017;3(7):e170278. https://doi.org/10.1001/jamaoncol.2017.0278.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Roviello G, Bachelot T, Hudis CA, Curigliano G, Reynolds AR, Petrioli R, et al. The role of bevacizumab in solid tumours: a literature based meta-analysis of randomised trials. Eur J Cancer. 2017;75:245–58. https://doi.org/10.1016/j.ejca.2017.01.026.

    Article  PubMed  CAS  Google Scholar 

  20. Miller BW, Morton JP, Pinese M, Saturno G, Jamieson NB, McGhee E, et al. Targeting the LOX/hypoxia axis reverses many of the features that make pancreatic cancer deadly: inhibition of LOX abrogates metastasis and enhances drug efficacy. EMBO Mol Med. 2015;7(8):1063–76. https://doi.org/10.15252/emmm.201404827.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Koong AC, Mehta VK, Le QT, Fisher GA, Terris DJ, Brown JM, et al. Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys. 2000;48(4):919–22.

    Article  PubMed  CAS  Google Scholar 

  22. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9. W64

    Article  PubMed  Google Scholar 

  23. International Clinical Trials Registry Platform: Search Portal. http://apps.who.int/trialsearch/Default.aspx. Accessed 11 April 2017.

  24. Ceyhan GO, Giese NA, Erkan M, Kerscher AG, Wente MN, Giese T, et al. The neurotrophic factor artemin promotes pancreatic cancer invasion. Ann Surg. 2006;244(2):274–81.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Von Hoff DD, Ramanathan RK, Borad MJ, Laheru DA, Smith LS, Wood TE, et al. Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J Clin Oncol. 2011;29(34):4548–54. https://doi.org/10.1200/JCO.2011.36.5742.

    Article  CAS  Google Scholar 

  26. Hosein PJ, de Lima Lopes G Jr, Pastorini VH, Gomez C, Macintyre J, Zayas G, et al. A phase II trial of nab-paclitaxel as second-line therapy in patients with advanced pancreatic cancer. Am J Clin Oncol. 2013;36(2):151–6. https://doi.org/10.1097/COC.0b013e3182436e8c.

    Article  PubMed  CAS  Google Scholar 

  27. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369(18):1691–703. https://doi.org/10.1056/NEJMoa1304369.

    Article  CAS  Google Scholar 

  28. Goldstein D, El-Maraghi RH, Hammel P, Heinemann V, Kunzmann V, Sastre J, et al. Nab-paclitaxel plus gemcitabine for metastatic pancreatic cancer: long-term survival from a phase III trial. J Natl Cancer Inst. 2015;107(2) https://doi.org/10.1093/jnci/dju413.

  29. Kindler HL, Friberg G, Singh DA, Locker G, Nattam S, Kozloff M, et al. Phase II trial of bevacizumab plus gemcitabine in patients with advanced pancreatic cancer. J Clin Oncol. 2005;23(31):8033–40. https://doi.org/10.1200/JCO.2005.01.9661.

    Article  PubMed  CAS  Google Scholar 

  30. Spano JP, Chodkiewicz C, Maurel J, Wong R, Wasan H, Barone C, et al. Efficacy of gemcitabine plus axitinib compared with gemcitabine alone in patients with advanced pancreatic cancer: an open-label randomised phase II study. Lancet. 2008;371(9630):2101–8. https://doi.org/10.1016/S0140-6736(08)60661-3.

    Article  PubMed  CAS  Google Scholar 

  31. Van Cutsem E, Vervenne WL, Bennouna J, Humblet Y, Gill S, Van Laethem JL, et al. Phase III trial of bevacizumab in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. J Clin Oncol. 2009;27(13):2231–7. https://doi.org/10.1200/JCO.2008.20.0238.

    Article  PubMed  CAS  Google Scholar 

  32. Kindler HL, Niedzwiecki D, Hollis D, Sutherland S, Schrag D, Hurwitz H, et al. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303). J Clin Oncol. 2010;28(22):3617–22. https://doi.org/10.1200/JCO.2010.28.1386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Astsaturov IA, Meropol NJ, Alpaugh RK, Burtness BA, Cheng JD, McLaughlin S, et al. Phase II and coagulation cascade biomarker study of bevacizumab with or without docetaxel in patients with previously treated metastatic pancreatic adenocarcinoma. Am J Clin Oncol. 2011;34(1):70–5. https://doi.org/10.1097/COC.0b013e3181d2734a.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kindler HL, Ioka T, Richel DJ, Bennouna J, Letourneau R, Okusaka T, et al. Axitinib plus gemcitabine versus placebo plus gemcitabine in patients with advanced pancreatic adenocarcinoma: a double-blind randomised phase 3 study. Lancet Oncol. 2011;12(3):256–62. https://doi.org/10.1016/S1470-2045(11)70004-3.

    Article  PubMed  CAS  Google Scholar 

  35. Rougier P, Riess H, Manges R, Karasek P, Humblet Y, Barone C, et al. Randomised, placebo-controlled, double-blind, parallel-group phase III study evaluating aflibercept in patients receiving first-line treatment with gemcitabine for metastatic pancreatic cancer. Eur J Cancer. 2013;49(12):2633–42. https://doi.org/10.1016/j.ejca.2013.04.002.

    Article  PubMed  CAS  Google Scholar 

  36. Yamaue H, Tsunoda T, Tani M, Miyazawa M, Yamao K, Mizuno N, et al. Randomized phase II/III clinical trial of elpamotide for patients with advanced pancreatic cancer: PEGASUS-PC study. Cancer Sci. 2015;106(7):883–90. https://doi.org/10.1111/cas.12674.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Suzuki N, Hazama S, Iguchi H, Uesugi K, Tanaka H, Hirakawa K, et al. Phase II clinical trial of peptide cocktail therapy for patients with advanced pancreatic cancer: VENUS-PC study. Cancer Sci. 2017;108(1):73–80. https://doi.org/10.1111/cas.13113.

    Article  PubMed  CAS  Google Scholar 

  38. Chen J, Rocken C, Nitsche B, Hosius C, Gschaidmeier H, Kahl S, et al. The tyrosine kinase inhibitor imatinib fails to inhibit pancreatic cancer progression. Cancer Lett. 2006;233(2):328–37. https://doi.org/10.1016/j.canlet.2005.03.027.

    Article  PubMed  CAS  Google Scholar 

  39. Catenacci DV, Junttila MR, Karrison T, Bahary N, Horiba MN, Nattam SR, et al. Randomized phase Ib/II study of gemcitabine plus placebo or Vismodegib, a hedgehog pathway inhibitor, in patients with metastatic pancreatic Cancer. J Clin Oncol. 2015;33(36):4284–92. https://doi.org/10.1200/JCO.2015.62.8719.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Nakai Y, Isayama H, Ijichi H, Sasaki T, Takahara N, Ito Y, et al. A multicenter phase II trial of gemcitabine and candesartan combination therapy in patients with advanced pancreatic cancer: GECA2. Investig New Drugs. 2013;31(5):1294–9. https://doi.org/10.1007/s10637-013-9972-5.

    Article  CAS  Google Scholar 

  41. Dragovich T, Burris H 3rd, Loehrer P, Von Hoff DD, Chow S, Stratton S, et al. Gemcitabine plus celecoxib in patients with advanced or metastatic pancreatic adenocarcinoma: results of a phase II trial. Am J Clin Oncol. 2008;31(2):157–62. https://doi.org/10.1097/COC.0b013e31815878c9.

    Article  PubMed  CAS  Google Scholar 

  42. Evans TR, Colston KW, Lofts FJ, Cunningham D, Anthoney DA, Gogas H, et al. A phase II trial of the vitamin D analogue Seocalcitol (EB1089) in patients with inoperable pancreatic cancer. Br J Cancer. 2002;86(5):680–5. https://doi.org/10.1038/sj.bjc.6600162.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Hingorani SR, Zheng L, Bullock AJ, Seery TE, Harris WP, Sigal DS, et al. HALO 202: randomized phase II study of PEGPH20 plus nab-paclitaxel/gemcitabine versus nab-paclitaxel/gemcitabine in patients with untreated, metastatic pancreatic ductal adenocarcinoma. J Clin Oncol. 2018;36(4):359–66. https://doi.org/10.1200/JCO.2017.74.9564.

    Article  PubMed  Google Scholar 

  44. Ko AH, Youssoufian H, Gurtler J, Dicke K, Kayaleh O, Lenz HJ, et al. A phase II randomized study of cetuximab and bevacizumab alone or in combination with gemcitabine as first-line therapy for metastatic pancreatic adenocarcinoma. Investig New Drugs. 2012;30(4):1597–606. https://doi.org/10.1007/s10637-011-9691-8.

    Article  CAS  Google Scholar 

  45. Chee CE, Krishnamurthi S, Nock CJ, Meropol NJ, Gibbons J, Fu P, et al. Phase II study of dasatinib (BMS-354825) in patients with metastatic adenocarcinoma of the pancreas. Oncologist. 2013;18(10):1091–2. https://doi.org/10.1634/theoncologist.2013-0255.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Dragovich T, Laheru D, Dayyani F, Bolejack V, Smith L, Seng J, et al. Phase II trial of vatalanib in patients with advanced or metastatic pancreatic adenocarcinoma after first-line gemcitabine therapy (PCRT O4-001). Cancer Chemother Pharmacol. 2014;74(2):379–87. https://doi.org/10.1007/s00280-014-2499-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Watkins DJ, Starling N, Cunningham D, Thomas J, Webb J, Brown G, et al. The combination of a chemotherapy doublet (gemcitabine and capecitabine) with a biological doublet (bevacizumab and erlotinib) in patients with advanced pancreatic adenocarcinoma. The results of a phase I/II study. Eur J Cancer. 2014;50(8):1422–9. https://doi.org/10.1016/j.ejca.2014.02.003.

    Article  PubMed  CAS  Google Scholar 

  48. Friess H, Langrehr JM, Oettle H, Raedle J, Niedergethmann M, Dittrich C, et al. A randomized multi-center phase II trial of the angiogenesis inhibitor Cilengitide (EMD 121974) and gemcitabine compared with gemcitabine alone in advanced unresectable pancreatic cancer. BMC Cancer. 2006;6:285. https://doi.org/10.1186/1471-2407-6-285.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Lohr JM, Haas SL, Bechstein WO, Bodoky G, Cwiertka K, Fischbach W, et al. Cationic liposomal paclitaxel plus gemcitabine or gemcitabine alone in patients with advanced pancreatic cancer: a randomized controlled phase II trial. Ann Oncol. 2012;23(5):1214–22. https://doi.org/10.1093/annonc/mdr379.

    Article  PubMed  CAS  Google Scholar 

  50. NCCN. Pancreatic Adenocarcinoma (Version I.2017). National Comprehensive Cancer Network. https://www.nccn.org/professionals/physician_gls/pdf/pancreatic.pdf. Accessed 04/04 2017.

  51. Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 2007;25(15):1960–6. https://doi.org/10.1200/JCO.2006.07.9525.

    Article  PubMed  CAS  Google Scholar 

  52. Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud R, Becouarn Y, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364(19):1817–25. https://doi.org/10.1056/NEJMoa1011923.

    Article  PubMed  CAS  Google Scholar 

  53. Ko AH, Truong TG, Kantoff E, Jones KA, Dito E, Ong A, et al. A phase I trial of nab-paclitaxel, gemcitabine, and capecitabine for metastatic pancreatic cancer. Cancer Chemother Pharmacol. 2012;70(6):875–81. https://doi.org/10.1007/s00280-012-1979-7.

    Article  PubMed  CAS  Google Scholar 

  54. Miyazawa M, Ohsawa R, Tsunoda T, Hirono S, Kawai M, Tani M, et al. Phase I clinical trial using peptide vaccine for human vascular endothelial growth factor receptor 2 in combination with gemcitabine for patients with advanced pancreatic cancer. Cancer Sci. 2010;101(2):433–9. https://doi.org/10.1111/j.1349-7006.2009.01416.x.

    Article  PubMed  CAS  Google Scholar 

  55. Starling N, Hawkes EA, Chau I, Watkins D, Thomas J, Webb J, et al. A dose escalation study of gemcitabine plus oxaliplatin in combination with imatinib for gemcitabine-refractory advanced pancreatic adenocarcinoma. Ann Oncol. 2012;23(4):942–7. https://doi.org/10.1093/annonc/mdr317.

    Article  PubMed  CAS  Google Scholar 

  56. Ko AH, LoConte N, Tempero MA, Walker EJ, Kate Kelley R, Lewis S, et al. A phase I study of FOLFIRINOX plus IPI-926, a hedgehog pathway inhibitor, for advanced pancreatic adenocarcinoma. Pancreas. 2016;45(3):370–5. https://doi.org/10.1097/MPA.0000000000000458.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Hingorani SR, Harris WP, Beck JT, Berdov BA, Wagner SA, Pshevlotsky EM, et al. Phase Ib study of PEGylated recombinant human hyaluronidase and gemcitabine in patients with advanced pancreatic Cancer. Clin Cancer Res. 2016;22(12):2848–54. https://doi.org/10.1158/1078-0432.CCR-15-2010.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Beatty GL, Torigian DA, Chiorean EG, Saboury B, Brothers A, Alavi A, et al. A phase I study of an agonist CD40 monoclonal antibody (CP-870,893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma. Clin Cancer Res. 2013;19(22):6286–95. https://doi.org/10.1158/1078-0432.CCR-13-1320.

    Article  PubMed  CAS  Google Scholar 

  59. Saletti P, Sessa C, De Dosso S, Cerny T, Renggli V, Koeberle D. Phase I dose-finding study of vandetanib in combination with gemcitabine in locally advanced unresectable or metastatic pancreatic adenocarcinoma. Oncology. 2011;81(1):50–4. https://doi.org/10.1159/000330769.

    Article  PubMed  CAS  Google Scholar 

  60. Chiorean EG, Schneider BP, Akisik FM, Perkins SM, Anderson S, Johnson CS, et al. Phase 1 pharmacogenetic and pharmacodynamic study of sorafenib with concurrent radiation therapy and gemcitabine in locally advanced unresectable pancreatic cancer. Int J Radiat Oncol Biol Phys. 2014;89(2):284–91. https://doi.org/10.1016/j.ijrobp.2014.02.024.

    Article  PubMed  CAS  Google Scholar 

  61. Erkan M, Reiser-Erkan C, Michalski CW, Deucker S, Sauliunaite D, Streit S, et al. Cancer-stellate cell interactions perpetuate the hypoxia-fibrosis cycle in pancreatic ductal adenocarcinoma. Neoplasia. 2009;11(5):497–508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Flaberg E, Markasz L, Petranyi G, Stuber G, Dicso F, Alchihabi N, et al. High-throughput live-cell imaging reveals differential inhibition of tumor cell proliferation by human fibroblasts. Int J Cancer. 2011;128(12):2793–802. https://doi.org/10.1002/ijc.25612.

    Article  PubMed  CAS  Google Scholar 

  63. Ozdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC, Simpson TR, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell. 2014;25(6):719–34. https://doi.org/10.1016/j.ccr.2014.04.005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Cremolini C, Loupakis F, Antoniotti C, Lupi C, Sensi E, Lonardi S, et al. FOLFOXIRI plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study. Lancet Oncol. 2015;16(13):1306–15. https://doi.org/10.1016/S1470-2045(15)00122-9.

    Article  PubMed  CAS  Google Scholar 

  65. Qu CY, Zheng Y, Zhou M, Zhang Y, Shen F, Cao J, et al. Value of bevacizumab in treatment of colorectal cancer: a meta-analysis. World J Gastroenterol. 2015;21(16):5072–80. https://doi.org/10.3748/wjg.v21.i16.5072.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Chen XS, Yuan Y, Garfield DH, Wu JY, Huang O, Shen KW. Both carboplatin and bevacizumab improve pathological complete remission rate in neoadjuvant treatment of triple negative breast cancer: a meta-analysis. PLoS One. 2014;9(9):e108405. https://doi.org/10.1371/journal.pone.0108405.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Seo Y, Baba H, Fukuda T, Takashima M, Sugimachi K. High expression of vascular endothelial growth factor is associated with liver metastasis and a poor prognosis for patients with ductal pancreatic adenocarcinoma. Cancer. 2000;88(10):2239–45.

    Article  PubMed  CAS  Google Scholar 

  68. Baker CH, Solorzano CC, Fidler IJ. Blockade of vascular endothelial growth factor receptor and epidermal growth factor receptor signaling for therapy of metastatic human pancreatic cancer. Cancer Res. 2002;62(7):1996–2003.

    PubMed  CAS  Google Scholar 

  69. Mizukami Y, Jo WS, Duerr EM, Gala M, Li J, Zhang X, et al. Induction of interleukin-8 preserves the angiogenic response in HIF-1alpha-deficient colon cancer cells. Nat Med. 2005;11(9):992–7. https://doi.org/10.1038/nm1294.

    Article  PubMed  CAS  Google Scholar 

  70. Aguilera KY, Rivera LB, Hur H, Carbon JG, Toombs JE, Goldstein CD, et al. Collagen signaling enhances tumor progression after anti-VEGF therapy in a murine model of pancreatic ductal adenocarcinoma. Cancer Res. 2014;74(4):1032–44. https://doi.org/10.1158/0008-5472.CAN-13-2800.

    Article  PubMed  CAS  Google Scholar 

  71. Couvelard A, O'Toole D, Leek R, Turley H, Sauvanet A, Degott C, et al. Expression of hypoxia-inducible factors is correlated with the presence of a fibrotic focus and angiogenesis in pancreatic ductal adenocarcinomas. Histopathology. 2005;46(6):668–76. https://doi.org/10.1111/j.1365-2559.2005.02160.x.

    Article  PubMed  CAS  Google Scholar 

  72. Pant S, Martin LK, Geyer S, Wei L, Van Loon K, Sommovilla N, et al. Baseline serum albumin is a predictive biomarker for patients with advanced pancreatic cancer treated with bevacizumab: a pooled analysis of 7 prospective trials of gemcitabine-based therapy with or without bevacizumab. Cancer. 2014;120(12):1780–6. https://doi.org/10.1002/cncr.28648.

    Article  PubMed  CAS  Google Scholar 

  73. Whatcott CJ, Han H, Von Hoff DD. Orchestrating the tumor microenvironment to improve survival for patients with pancreatic Cancer: normalization, not destruction. Cancer J. 2015;21(4):299–306. https://doi.org/10.1097/PPO.0000000000000140.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Nagaraju GP, Dontula R, El-Rayes BF, Lakka SS. Molecular mechanisms underlying the divergent roles of SPARC in human carcinogenesis. Carcinogenesis. 2014;35(5):967–73. https://doi.org/10.1093/carcin/bgu072.

    Article  PubMed  CAS  Google Scholar 

  75. Hidalgo M, Plaza C, Musteanu M, Illei P, Brachmann CB, Heise C, et al. SPARC expression did not predict efficacy of nab-paclitaxel plus gemcitabine or gemcitabine alone for metastatic pancreatic Cancer in an exploratory analysis of the phase III MPACT trial. Clin Cancer Res. 2015;21(21):4811–8. https://doi.org/10.1158/1078-0432.CCR-14-3222.

    Article  PubMed  CAS  Google Scholar 

  76. Neesse A, Frese KK, Chan DS, Bapiro TE, Howat WJ, Richards FM, et al. SPARC independent drug delivery and antitumour effects of nab-paclitaxel in genetically engineered mice. Gut. 2014;63(6):974–83. https://doi.org/10.1136/gutjnl-2013-305559.

    Article  PubMed  CAS  Google Scholar 

  77. Alvarez R, Musteanu M, Garcia-Garcia E, Lopez-Casas PP, Megias D, Guerra C, et al. Stromal disrupting effects of nab-paclitaxel in pancreatic cancer. Br J Cancer. 2013;109(4):926–33. https://doi.org/10.1038/bjc.2013.415.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Fraser JR, Laurent TC, Laurent UB. Hyaluronan: its nature, distribution, functions and turnover. J Intern Med. 1997;242(1):27–33.

    Article  PubMed  CAS  Google Scholar 

  79. Kohi S, Sato N, Koga A, Hirata K, Harunari E, Igarashi Y. Hyaluromycin, a novel hyaluronidase inhibitor, attenuates pancreatic cancer cell migration and proliferation. J Oncol. 2016;2016:9063087. https://doi.org/10.1155/2016/9063087.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Cheng XB, Kohi S, Koga A, Hirata K, Sato N. Hyaluronan stimulates pancreatic cancer cell motility. Oncotarget. 2016;7(4):4829–40. https://doi.org/10.18632/oncotarget.6617.

    Article  PubMed  Google Scholar 

  81. Marhaba R, Zoller M. CD44 in cancer progression: adhesion, migration and growth regulation. J Mol Histol. 2004;35(3):211–31.

    Article  PubMed  CAS  Google Scholar 

  82. Birnbaum DJ, Finetti P, Lopresti A, Gilabert M, Poizat F, Turrini O, et al. Prognostic value of PDL1 expression in pancreatic cancer. Oncotarget. 2016;7(44):71198–210. https://doi.org/10.18632/oncotarget.11685.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–39. https://doi.org/10.1056/NEJMoa1507643.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined Nivolumab and Ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34. https://doi.org/10.1056/NEJMoa1504030.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, et al. Nivolumab versus Everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–13. https://doi.org/10.1056/NEJMoa1510665.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Sherman MH, Yu RT, Engle DD, Ding N, Atkins AR, Tiriac H, et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell. 2014;159(1):80–93. https://doi.org/10.1016/j.cell.2014.08.007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Froeling FE, Feig C, Chelala C, Dobson R, Mein CE, Tuveson DA, et al. Retinoic acid-induced pancreatic stellate cell quiescence reduces paracrine Wnt-beta-catenin signaling to slow tumor progression. Gastroenterology. 2011;141(4):1486–97, 97 e1–14. https://doi.org/10.1053/j.gastro.2011.06.047.

    Article  PubMed  CAS  Google Scholar 

  88. Bachem MG, Schunemann M, Ramadani M, Siech M, Beger H, Buck A, et al. Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells. Gastroenterology. 2005;128(4):907–21.

    Article  PubMed  CAS  Google Scholar 

  89. Masamune A, Hamada S, Kikuta K, Takikawa T, Miura S, Nakano E, et al. The angiotensin II type I receptor blocker olmesartan inhibits the growth of pancreatic cancer by targeting stellate cell activities in mice. Scand J Gastroenterol. 2013;48(5):602–9. https://doi.org/10.3109/00365521.2013.777776.

    Article  PubMed  CAS  Google Scholar 

  90. Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials. 2007;8:16. https://doi.org/10.1186/1745-6215-8-16.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors would like to acknowledge the following institutes for their financial support of the current study: National Natural Science Foundation of China (No. 81672449 to YM), the Innovation Capability Development Project of Jiangsu Province (No. BM2015004 to YM), Clinical Frontier Technology of Jiangsu Provincial Science and Technology Department (No. BE2016788 to KJ). The source of funding did not contribute to study design, data analysis, or manuscript writing and revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Miao.

Ethics declarations

Conflict of Interest

Stefan Boeck acted as a consultant, and received honoraria for scientific presentations and research funding from Celgene; Zipeng Lu, Maximilian Weniger, Kuirong Jiang, Kai Zhang, Alexander Bazhin, Yi Miao, Jens Werner, and Jan G. D’Haese declare that they have no conflicts of interest that might be relevant to the contents of this manuscript.

Electronic supplementary material

ESM 1

(PDF 207 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Z., Weniger, M., Jiang, K. et al. Therapies Targeting the Tumor Stroma and the VEGF/VEGFR Axis in Pancreatic Ductal Adenocarcinoma: a Systematic Review and Meta-Analysis. Targ Oncol 13, 447–459 (2018). https://doi.org/10.1007/s11523-018-0578-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-018-0578-x

Navigation