Skip to main content

Advertisement

Log in

Transforming growth factor-beta and its implication in the malignancy of gliomas

  • Review
  • Published:
Targeted Oncology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Malignant gliomas are the most common type of primary malignant brain tumors. They are characterized by enhanced growing capabilities, neoangiogenic proliferation, and extensive infiltration of the brain parenchyma, which make their complete surgical resection impossible. Together with transient and refractory responses to standard therapy, these aggressive neoplasms are incurable and present a median survival of 12 to 14 months. Transforming growth factor-beta (TGF-β) is a pleiotropic cytokine of which two of the three isoforms expressed in humans have been shown to be overexpressed proportionally to the histologic grade of glioma malignancy. The increase of chromosomal aberrations and genetic mutations observed in glioma cells turns TGF-β into an oncogene. For that reason, it plays critical roles in glioma progression through induction of several genes implicated in many carcinogenic processes such as proliferation, angiogenesis, and invasion. Consequently, investigators have begun developing innovative therapeutics targeting this growth factor or its signaling pathway in an attempt to hinder TGF-β’s appalling effects in order to refine the treatment of malignant gliomas and improve their prognosis. In this paper, we extensively review the TGF-β-induced oncogenic pathways and discuss the diverse new molecules targeting this growth factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Blobe GC, Schiemann WP, Lodish HF (2000) Role of transforming growth factor beta in human disease. N Engl J Med 342:1350–1358

    CAS  PubMed  Google Scholar 

  2. Govinden R, Bhoola KD (2003) Genealogy, expression, and cellular function of transforming growth factor-b. Pharmacol Ther 98:257–265

    CAS  PubMed  Google Scholar 

  3. Wang G, Matsuura I, He D et al (2009) Transforming growth factor-{beta}-inducible phosphorylation of Smad3. J Biol Chem 284:9663–9673

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Wakefield LM, Roberts AB (2002) TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 12:22–29

    CAS  PubMed  Google Scholar 

  5. Dolecek TA, Propp JM, Stroup NE et al (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neurol Oncol 14:v1–49

    Google Scholar 

  6. Jiang Y, Uhrbom L (2012) On the origin of glioma. Ups J Med Sci 117:113–121

    PubMed Central  PubMed  Google Scholar 

  7. Liu C, Sage JC, Miller MR et al (2011) Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell 146:209–221

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

    CAS  PubMed  Google Scholar 

  10. Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    CAS  PubMed  Google Scholar 

  11. Beier D, Schulz JB, Beier CP (2011) Chemoresistance of glioblastoma cancer stem cells—much more complex than expected. Mol Cancer 10:128

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Bleau A-M, Hambardzumyan D, Ozawa T et al (2009) PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4:226–235

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    CAS  PubMed  Google Scholar 

  14. Anido J, Sáez-Borderías A, Gonzàlez-Juncà A et al (2010) TGF-beta receptor inhibitors target the CD44high/Id1high glioma-initiating cell population in human glioblastoma. Cancer Cell 18:655–668

    CAS  PubMed  Google Scholar 

  15. Desmarais G, Fortin D, Bujold R et al (2012) Infiltration of glioma cells in brain parenchyma stimulated by radiation in the F98/Fischer rat model. Int J Radiat Biol 88:565–574

    CAS  PubMed  Google Scholar 

  16. Kjellman C, Olofsson S, Hansson O (2000) Expression of TGF-β isoforms, TGF-β receptors, and SMAD molecules at different stages of human glioma. Int J Cancer 89:251–258

    CAS  PubMed  Google Scholar 

  17. Gatherer D, Ten Dijke P, Baird DT et al (1990) Expression of TGF-beta isoforms during first trimester human embryogenesis. Development 110:445–460

    CAS  PubMed  Google Scholar 

  18. Saharinen J, Hyytiäinen M, Taipale J et al (1999) Latent transforming growth factor-beta binding proteins (LTBPs)—structural extracellular matrix proteins for targeting TGF-beta action. Cytokine Growth Factor Rev 10:99–117

    CAS  PubMed  Google Scholar 

  19. Dubois CM, Laprise M-H, Blanchette F et al (1995) Processing of transforming growth factor b1 precusor by human furin convertase. J Biol Chem 270:10618–10624

    CAS  PubMed  Google Scholar 

  20. Clark DA, Coker R (1998) Transforming growth factor-beta (TGF-b). Int J Biochem Cell Biol 30:293–298

    CAS  PubMed  Google Scholar 

  21. Horimoto M, Kato J, Takimoto R et al (1995) Identification of a transforming growth factor beta-1 activator derived from a human gastric cancer cell line. Br J Cancer 72:676–682

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Kaminska B, Wesolowska A, Danilkiewicz M (2005) TGF beta signaling and its role in tumour pathogenesis. Acta Biochim Pol 52:329–337

    CAS  PubMed  Google Scholar 

  23. Gatza CE, Oh SY, Blobe GC (2010) Roles for the type III TGF-beta receptor in human cancer. Cell Signal 22:1163–1174

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Massagué J, Wotton D (2000) Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 19:1745–1754

    PubMed Central  PubMed  Google Scholar 

  25. Huang T, David L, Mendoza V et al (2011) TGF-beta; signaling is mediated by two autonomously functioning TBRI:TBRII pairs. EMBO J 30:1263–1276

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Massagué J, Blain SW, Lo RS (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103:295–309

    PubMed  Google Scholar 

  27. Xu J (2000) Mutations in the tumor suppressors Smad2 and Smad4 inactivate transforming growth factor β signaling by targeting Smads to the ubiquitin–proteasome pathway. Paper presented at the Proc Natl Acad Sci U S A

  28. Abdollah S, Marcias-Silva M, Tsukazaki T et al (1997) TBRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and. J Biol Chem 272:27678–27685

    CAS  PubMed  Google Scholar 

  29. Matsuura I, Denissova NG, Wang G et al (2004) Cyclin-dependent kinases regulate the antiproliferative function of Smads. Nature 430:226–231

    CAS  PubMed  Google Scholar 

  30. Tsukazaki T, Chiang T, Davison A et al (1998) SARA, a FYVE domain protein that recruits Smad2 to the TGF [beta] receptor. Cell 95:779–791

    CAS  PubMed  Google Scholar 

  31. Hayashi H, Abdollah S, Qiu Y et al (1997) The MAD-related protein Smad7 associates with the TGFB receptor and functions as an antagonist of TGFB signaling. Cell 89:1165–1173

    CAS  PubMed  Google Scholar 

  32. Nakao A, Imamura T, Souchelnytskyi S et al (1997) TGF-beta receptor-mediated signaling through Smad2, Smad3 and Smad4. EMBO J 16:5353–5362

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signaling. Nature 425:577–584

    CAS  PubMed  Google Scholar 

  34. Ebisawa T, Fukuchi M, Murakami G (2001) Smurf1 interacts with transforming growth factor-β type I receptor through Smad7 and induces receptor degradation. J Biol Chem 276:12477–12480

    CAS  PubMed  Google Scholar 

  35. Kavsak P, Rasmussen RK, Causing CG et al (2000) Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGFβ receptor for degradation. Mol Cell 6:1365–1375

    CAS  PubMed  Google Scholar 

  36. Lin X (2000) Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling. J Biol Chem 275:36818–36822

    CAS  PubMed  Google Scholar 

  37. Morén A, Imamura T, Miyazono K et al (2005) Degradation of the tumor suppressor Smad4 by WW and HECT domain ubiquitin ligases. J Biol Chem 280:22115–22123

    PubMed  Google Scholar 

  38. Inui M, Manfrin A, Mamidi A et al (2011) USP15 is a deubiquitylating enzyme for receptor-activated SMADs. Nat Cell Biol 13:1368–1375

    CAS  PubMed  Google Scholar 

  39. Aggarwal K, Massagué J (2012) Ubiquitin removal in the TGF-β pathway. Nat Cell Biol 14:656–657

    CAS  PubMed  Google Scholar 

  40. De Boeck M, Ten Dijke P (2012) Key role for ubiquitin protein modification in TGFβ signal transduction. Ups J Med Sci 117:153–165

    PubMed Central  PubMed  Google Scholar 

  41. Dupont S, Mamidi A, Cordenonsi M et al (2009) FAM/USP9x, a deubiquitinating enzyme essential for TGFβ signaling, controls Smad4 monoubiquitination. Cell 136:123–135

    CAS  PubMed  Google Scholar 

  42. Eichhorn PJA, Rodón L, Gonzàlez-Juncà A et al (2012) USP15 stabilizes TGF-β receptor I and promotes oncogenesis through the activation of TGF-β signaling in glioblastoma. Nat Med 18:429–435

    CAS  PubMed  Google Scholar 

  43. Zhang L, Zhou F, Drabsch Y et al (2012) USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-β type I receptor. Nat Cell Biol 14:717–726

    CAS  PubMed  Google Scholar 

  44. Moustakas A, Heldin C-H (2005) Non-Smad TGF-β signals. J Cell Sci 118:3573–3584

    CAS  PubMed  Google Scholar 

  45. Mu Y, Gudey SK, Landström M (2011) Non-Smad signaling pathways. Cell Tissue Res 347:11–20

    PubMed  Google Scholar 

  46. Zhang YE (2009) Non-Smad pathways in TGF-β signaling. Cell Res 19:128–139

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Chen R, Ebner R (1993) Inactivation of the type II receptor reveals two receptor pathways for the diverse TGF-beta activities. Science 260:1335–1338

    CAS  PubMed  Google Scholar 

  48. Jennings MT, Pietenpol JA (1998) The role of transforming growth factor beta in glioma progression. J Neurooncol 36:123–140

    CAS  PubMed  Google Scholar 

  49. Galli R, Binda E, Orfanelli U et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021

    CAS  PubMed  Google Scholar 

  50. Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    PubMed Central  PubMed  Google Scholar 

  51. Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    CAS  PubMed  Google Scholar 

  52. Turner JD, Abla AA, Sanai N (2012) Identification of the glioma cell of origin. World Neurosurg, Sep, pp 200-201

  53. Gomez GG, Kruse CA (2006) Mechanisms of malignant glioma immune resistance and sources of immunosuppression. Gene Ther Mol Biol 10:133–146

    PubMed Central  PubMed  Google Scholar 

  54. Fortin D, Desjardins A, Benko A et al (2005) Enhanced chemotherapy delivery by intraarterial infusion and blood-brain barrier disruption in malignant brain tumors. Cancer 103:2606–2615

    PubMed  Google Scholar 

  55. Bigner SH, Mark J, Bullard DE et al (1986) Chromosomal evolution in malignant human gliomas starts with specific and usually numerical deviations. Cancer Genet Cytogenet 22:121–135

    CAS  PubMed  Google Scholar 

  56. Bigner SH, Mark J, Burger PC et al (1988) Specific chromosomal abnormalities in malignant human gliomas. Cancer Res 48:405–411

    CAS  PubMed  Google Scholar 

  57. Gadji M, Fortin D, Tsanaclis AM et al (2010) Three-dimensional nuclear telomere architecture is associated with differential time to progression and overall survival in glioblastoma patients. Neoplasia 12:183–191

    PubMed Central  PubMed  Google Scholar 

  58. Louis SF, Vermolen BJ, Garini Y et al (2005) c-Myc induces chromosomal rearrangements through telomere and chromosome remodeling in the interphase nucleus. Proc Natl Acad Sci U S A 102:9613–9618

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Rasheed BK, Wiltshire RN, Bigner SH et al (1999) Molecular pathogenesis of malignant gliomas. Curr Opin Oncol 11:162–167

    CAS  PubMed  Google Scholar 

  60. Rich JN, Bigner DD (2004) Development of novel targeted therapies in the treatment of malignant glioma. Nat Rev Drug Discov 3:430–446

    CAS  PubMed  Google Scholar 

  61. Constam DB, Philipp J, Malipiero UV et al (1992) Differential expression of transforming growth factor-beta 1, -beta 2, and -beta 3 by glioblastoma cells, astrocytes, and microglia. J Immunol 148:1404–1410

    CAS  PubMed  Google Scholar 

  62. Schneider T, Sailer M, Ansorge S et al (2006) Increased concentrations of transforming growth factor β1 and β2 in the plasma of patients with glioblastoma. J Neurooncol 79:61–65

    CAS  PubMed  Google Scholar 

  63. Schlingensiepen KH, Schlingensiepen R, Steinbrecher A et al (2006) Targeted tumor therapy with the TGF-beta 2 antisense compound AP 12009. Cytokine Growth Factor Rev 17:129–139

    CAS  PubMed  Google Scholar 

  64. Gomez GG, Varella-Garcia M, Kruse CA (2006) Isolation of immunoresistant human glioma cell clones after selection with alloreactive cytotoxic T lymphocytes: cytogenetic and molecular cytogenetic characterization. Cancer Genet Cytogenet 165:121–134

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Lassman AB, Dai C, Fuller GN et al (2004) Overexpression of c-MYC promotes an undifferentiated phenotype in cultured astrocytes and allows elevated Ras and Akt signaling to induce gliomas from GFAP-expressing cells in mice. Neuron Glia Biol 1:157–163

    PubMed Central  PubMed  Google Scholar 

  66. Ikushima H, Todo T, Ino Y et al (2009) Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Stem Cell 5:504–514

    CAS  Google Scholar 

  67. Seoane J, Le H-V, Shen L et al (2004) Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117:211–223

    CAS  PubMed  Google Scholar 

  68. Bruna A, Darken RS, Rojo F et al (2007) High TGFβ-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell 11:147–160

    CAS  PubMed  Google Scholar 

  69. Song L, Liu L, Wu Z et al (2012) TGF-β induces miR-182 to sustain NF-κB activation in glioma subsets. J Clin Invest 122:3563–3578

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Frank SA, Nowak MA (2003) Cell biology: developmental predisposition to cancer. Nature 422:494

    CAS  PubMed  Google Scholar 

  71. Günther HS, Schmidt NO, Phillips HS et al (2007) Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene 27:2897–2909

    PubMed  Google Scholar 

  72. Singh SK, Clarke ID, Terasaki M et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    CAS  PubMed  Google Scholar 

  73. Frosina G (2009) DNA repair and resistance of gliomas to chemotherapy and radiotherapy. Mol Cancer Res 7:989–999

    CAS  PubMed  Google Scholar 

  74. Godlewski J, Nowicki MO, Bronisz A et al (2008) Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 68:9125–9130

    CAS  PubMed  Google Scholar 

  75. Molofsky AV, Pardal R, Iwashita T et al (2003) Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425:962–967

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Peñuelas S, Anido J, Prieto-SAnchez RM et al (2009) TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell 15:315–327

    PubMed  Google Scholar 

  77. Bauer S, Patterson PH (2006) Leukemia inhibitory factor promotes neural stem cell self-renewal in the adult brain. J Neurosci 26:12089–12099

    CAS  PubMed  Google Scholar 

  78. Bonni A (1997) Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. Science 278:477–483

    CAS  PubMed  Google Scholar 

  79. Nam H-s, Benezra R (2009) High levels of Id1 expression define B1 type adult neural stem cells. Stem Cell 5:515–526

    CAS  Google Scholar 

  80. Clarke MF, Dick JE, Dirks PB et al (2006) Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66:9339–9344

    CAS  PubMed  Google Scholar 

  81. Phillips HS, Kharbanda S, Chen R et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173

    CAS  PubMed  Google Scholar 

  82. Marchetto MCN, Carromeu C, Acab A et al (2010) A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143:527–539

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Tonn JC, Kerkau S, Hanke A et al (1999) Effect of synthetic matrix-metalloproteinase inhibitors on invasive capacity and proliferation of human malignant gliomas in vitro. Int J Cancer 80:764–772

    CAS  PubMed  Google Scholar 

  84. Rooprai HK, Rucklidge GJ, Panou C et al (2000) The effects of exogenous growth factors on matrix metalloproteinase secretion by human brain tumour cells. Br J Cancer 82:52–55

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Uhm JH, Gladson CL, Rao JS (1999) The role of integrins in the malignant phenotype of gliomas. Front Biosci 4:D188–199

    CAS  PubMed  Google Scholar 

  86. Wick W, Platten M, Weller M (2001) Glioma cell invasion: regulation of metalloproteinase activity by TGF-beta. J Neurooncol 53:177–185

    CAS  PubMed  Google Scholar 

  87. Huijbers IJ, Iravani M, Popov S et al (2010) A role for fibrillar collagen deposition and the collagen internalization receptor Endo180 in glioma invasion. PLoS ONE 5:e9808

    PubMed Central  PubMed  Google Scholar 

  88. Chung AS, Lee J, Ferrara N (2010) Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer 10:505–514

    CAS  PubMed  Google Scholar 

  89. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31

    CAS  PubMed  Google Scholar 

  90. Jensen RL (1998) Growth factor-mediated angiogenesis in the malignant progression of glial tumors: a review. Surg Neurol 49:189–195

    CAS  PubMed  Google Scholar 

  91. Pepper M (1997) Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev 8:21–43

    CAS  PubMed  Google Scholar 

  92. Plate K, Breier G, Weich H (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359:845–848

    CAS  PubMed  Google Scholar 

  93. Folkman J, Klagsbrun M (1987) Angiogenic factors. Science 235:442–447

    CAS  PubMed  Google Scholar 

  94. Kavanaugh W, Harsh G, Starksen N (1988) Transcriptional regulation of the A and B chain genes of platelet-derived growth factor in microvascular endothelial cells. J Biol Chem 263:8470–8472

    CAS  PubMed  Google Scholar 

  95. Tsai JC, Goldman CK, Gillespie GY (1995) Vascular endothelial growth factor in human glioma cell lines: induced secretion by EGF, PDGF-BB, and bFGF. J Neurosurg 82:864–873

    CAS  PubMed  Google Scholar 

  96. Wang D, Huang HJ, Kazlauskas A et al (1999) Induction of vascular endothelial growth factor expression in endothelial cells by platelet-derived growth factor through the activation of phosphatidylinositol 3-kinase. Cancer Res 59:1464–1472

    CAS  PubMed  Google Scholar 

  97. Platten M, Wick W, Weller M (2001) Malignant glioma biology: role for TGF-β in growth, motility, angiogenesis, and immune escape. Microsc Res Tech 52:401–410

    CAS  PubMed  Google Scholar 

  98. Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev 14:163–176

    PubMed Central  PubMed  Google Scholar 

  99. Pardridge WM (2007) Blood-brain barrier delivery of protein and non-viral gene therapeutics with molecular Trojan horses. J Control Release 122:345–348

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Rubin LL, Staddon JM (1999) The cell biology of the blood-brain barrier. Annu Rev Neurosci 22:11–28

    CAS  PubMed  Google Scholar 

  101. Hickey WF (2001) Basic principles of immunological surveillance of the normal central nervous system. Glia 36:118–124

    CAS  PubMed  Google Scholar 

  102. Walker PR, Calzascia T, Dietrich PY (2002) All in the head: obstacles for immune rejection of brain tumours. Immunology 107:28–38

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Quattrocchi KB, Miller CH, Cush S et al (1999) Pilot study of local autologous tumor infiltrating lymphocytes for the treatment of recurrent malignant gliomas. J Neurooncol 45:141–157

    CAS  PubMed  Google Scholar 

  104. Brooks WH, Roszman TL, Mahaley MS et al (1977) Immunobiology of primary intracranial tumours. II. Analysis of lymphocyte subpopulations in patients with primary brain tumours. Clin Exp Immunol 29:61–66

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Dix AR, Brooks WH, Roszman TL et al (1999) Immune defects observed in patients with primary malignant brain tumors. J Neuroimmunol 100:216–232

    CAS  PubMed  Google Scholar 

  106. Lowin-Kropf B, Shapiro VS, Weiss A (1998) Cytoskeletal polarization of T cells is regulated by an immunoreceptor tyrosine-based activation motif-dependent mechanism. J Cell Biol 140:861–871

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Woiciechowsky C, Asadullah K, Nestler D et al (1998) Diminished monocytic HLA-DR expression and ex vivo cytokine secretion capacity in patients with glioblastoma: effect of tumor extirpation. J Neuroimmunol 84:164–171

    CAS  PubMed  Google Scholar 

  108. Morford LA, Elliott LH, Carlson SL et al (1997) T cell receptor-mediated signaling is defective in T cells obtained from patients with primary intracranial tumors. J Immunol 159:4415–4425

    CAS  PubMed  Google Scholar 

  109. Smyth M, Strobl S, Young H (1991) Regulation of lymphokine-activated killer activity and pore-forming protein gene expression in human peripheral blood CD8+ T lymphocytes. Inhibition by transforming growth factor-b1. J Immunol 146:3289–3297

    CAS  PubMed  Google Scholar 

  110. Crane CA, Han SJ, Barry JJ et al (2010) TGF-beta downregulates the activating receptor NKG2D on NK cells and CD8+ T cells in glioma patients. Neuro Oncol 12:7–13

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Friese MA, Wischhusen J, Wick W et al (2004) RNA interference targeting transforming growth factor-beta enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res 64:7596–7603

    CAS  PubMed  Google Scholar 

  112. Ahuja S, Paliogianni F, Yamada H (1993) Effect of transforming growth factor-beta on early and late activation events in human T cells. J Immunol 150:3109–3118

    CAS  PubMed  Google Scholar 

  113. Brooks B, Chapman K, Lawry J et al (1990) Suppression of lymphokine-activated killer (LAK) cell induction mediated by interleukin-4 and transforming growth factor-beta 1: effect of addition of exogenous tumour necrosis factor-alpha and interferon-gamma, and measurement of their endogenous production. Clin Exp Immunol 82:583–589

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Arteaga C, Hurd S, Winnier A (1993) Anti-transforming growth factor (TGF)-beta antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. J Clin Invest 92:2569–2576

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Inge T, Hoover S, Susskind B et al (1992) Inhibition of tumor-specific cytotoxic T-lymphocyte responses by transforming growth factor β1. Cancer Res 52:1386–1392

    CAS  PubMed  Google Scholar 

  116. Suzumura A, Sawada M (1993) Transforming growth factor-beta suppresses activation and proliferation of microglia in vitro. J Immunol 151:2150–2158

    CAS  PubMed  Google Scholar 

  117. Facoetti A, Pasi F, Nano R (2010) Some considerations for the study of TGFbeta in medium of irradiated T98G cells: activation, release and consumption. Anticancer Res 30:3341–3344

    CAS  PubMed  Google Scholar 

  118. Gow MD, Seymour CB, Ryan LA et al (2010) Induction of bystander response in human glioma cells using high-energy electrons: a role for TGF-beta1. Radiat Res 173:769–778

    CAS  PubMed  Google Scholar 

  119. Zhang M, Kleber S, Röhrich M et al (2011) Blockade of TGF-β signaling by the TGFβR-I kinase inhibitor LY2109761 enhances radiation response and prolongs survival in glioblastoma. Cancer Res 71:7155–7167

    CAS  PubMed  Google Scholar 

  120. Hardee ME, Marciscano AE, Medina-Ramirez CM et al (2012) Resistance of glioblastoma initiating cells to radiation mediated by the tumor microenvironment can be abolished by inhibiting transforming growth factor-β (TGFβ). Cancer Res 72:4119–4129

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Sims JT, Ganguly SS, Bennett H et al (2013) Imatinib reverses doxorubicin resistance by affecting activation of STAT3-dependent NF-κB and HSP27/p38/AKT pathways and by inhibiting ABCB1. PLoS ONE 8:e55509

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Zhang M, Herion TW, Timke C et al (2011) Trimodal glioblastoma treatment consisting of concurrent radiotherapy, temozolomide, and the novel TGF-β receptor I kinase inhibitor LY2109761. Neoplasia 13:537–549

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Fakhrai H, Dorigo O, Shawler DL et al (1996) Eradication of established intracranial rat gliomas by transforming growth factor beta antisense gene therapy. Proc Natl Acad Sci U S A 93:2909–2914

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Hau P, Jachimczak P, Schlingensiepen R et al (2007) Inhibition of TGF-beta2 with AP 12009 in recurrent malignant gliomas: from preclinical to phase I/II studies. Oligonucleotides 17:201–212

    CAS  PubMed  Google Scholar 

  125. Bogdahn U, Hau P, Stockhammer G et al (2011) Targeted therapy for high-grade glioma with the tgf-β2 inhibitor trabedersen: results of a randomized and controlled phase iib study. Neuro Oncol 13:132–142

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Basque J, Martel M, Leduc R et al (2008) Lysosomotropic drugs inhibit maturation of transforming growth factor-β. Can J Physiol Pharmacol 86:606–612

    CAS  PubMed  Google Scholar 

  127. Ya Y (2002) Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J Clin Invest 109:1607–1615

    Google Scholar 

  128. Ueda R, Fujita M, Zhu X et al (2009) Systemic inhibition of transforming growth factor-beta in glioma-bearing mice improves the therapeutic efficacy of glioma-associated antigen peptide vaccines. Clin Cancer Res 15:6551–6559

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Thomas G (2002) Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat Rev Mol Cell Biol 3:753–766

    PubMed Central  CAS  PubMed  Google Scholar 

  130. DaCosta BS, Major C, Laping N (2004) SB-505124 is a selective inhibitor of transforming growth factor-β type I receptors ALK4, ALK5, and ALK7. Mol Pharmacol 65:744–752

    Google Scholar 

  131. Uhl M, Aulwurm S, Wischhusen J et al (2004) SD-208, a novel transforming growth factor receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res 64:7954–7961

    CAS  PubMed  Google Scholar 

  132. Schlingensiepen R, Goldbrunner M, Szyrach MNI et al (2005) Intracerebral and intrathecal iof the TGF-β2-specific antisense phosphorothioate oligonucleotide AP 12009 in rabbits and primates: toxicology and safety. Oligonucleotides 15:94–104

    CAS  PubMed  Google Scholar 

  133. Fortin D (2012) The blood-brain barrier: its influence in the treatment of brain tumors metastases. Curr Cancer Drug Targets 12:247–259

    CAS  PubMed  Google Scholar 

  134. Newton HB, Slivka MA, Volpi C et al (2003) Intra-arterial carboplatin and intravenous etoposide for the treatment of metastatic brain tumors. J Neurooncol 61:35–44

    PubMed  Google Scholar 

  135. De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3:133–149

    PubMed Central  PubMed  Google Scholar 

  136. Wilczewska AZ, Niemirowicz K, Markiewicz KH et al (2012) Nanoparticles as drug delivery systems. Pharmacol Rep 64:1020–1037

    CAS  PubMed  Google Scholar 

  137. Hösli P, Sappino AP, de Tribolet N et al (1998) Malignant glioma: should chemotherapy be overthrown by experimental treatments? Ann Oncol 9:589–600

    PubMed  Google Scholar 

  138. Silbergeld DL, Chicoine MR (1997) Isolation and characterization of human malignant glioma cells from histologically normal brain. J Neurosurg 86:525–531

    CAS  PubMed  Google Scholar 

  139. Veilleux N, Goffaux P, Boudrias M et al (2010) Quality of life in neurooncology—age matters. J Neurosurg 113:325–332

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Bank research chair on the treatment of brain tumors.

Conflict of interest

We have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Fortin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, LO., Poirier, MB. & Fortin, D. Transforming growth factor-beta and its implication in the malignancy of gliomas. Targ Oncol 10, 1–14 (2015). https://doi.org/10.1007/s11523-014-0308-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-014-0308-y

Keywords