Skip to main content
Log in

Effect of transmural pressure on the estimation of arterial stiffness index from the photoplethysmographic waveform

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The aim of this study was to find the effect of transmural pressure on the determination of the photoplethysmographic (PPG) waveform arterial stiffness index (PPGAI). The study was conducted on 51 subjects without diagnosis of cardiovascular disease, aged between 24 and 74 years. The relation between the transmural pressure, which is the difference between the arterial blood pressure and the PPG sensor contact pressure, and the PPGAI was determined. PPG, beat-to-beat blood pressure, and sensor contact pressure signals were recorded from the index, middle, and ring finger. The PPG sensor contact pressure of the index finger was increased from 20 to 120 mmHg. The aortic augmentation index (AIx@75) was estimated with a SphygmoCor device as a reference. High correlation coefficients r = 0.79 and r = 0.83 between PPGAI and AIx@75, and low PPGAI standard deviations were observed at the transmural pressures of 10 and 20 mmHg, respectively. Transmural pressure of 20 mmHg can be considered suitable for the PPG signal registration and PPGAI calculation for the assessment of arterial stiffness. In summary, the contact pressure of the sensor should be selected according to theblood pressure of the subject finger in order to achieve the transmural pressure suitable for the assessment of PPGAI and arterial stiffness.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bentham M, Stansby G, Allen J (2018) Innovative multi-site photoplethysmography analysis for quantifying pulse amplitude and timing variability characteristics in peripheral arterial disease. Diseases (Basel, Switzerland) 6:81. https://doi.org/10.3390/diseases6030081

    Article  PubMed  Google Scholar 

  2. Butlin M, Qasem A (2017) Large artery stiffness assessment using SphygmoCor Technology. Pulse (Basel) 4:180–192. https://doi.org/10.1159/000452448

    Article  PubMed  Google Scholar 

  3. Castaneda D, Esparza A, Ghamari M, Soltanpur C, Nazeran H (2018) A review on wearable photoplethysmography sensors and their potential future applications in health care. Int J Biosens Bioelectron 4:195–202. https://doi.org/10.15406/ijbsbe.2018.04.00125

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cecelja M, Chowienczyk P (2013) Arterial stiffening: causes and consequences. Artery Res 7:22–27. https://doi.org/10.1016/j.artres.2012.09.001

    Article  Google Scholar 

  5. Chandrasekhar A, Kim CS, Naji M, Natarajan K, Hahn JO, Mukkamala R (2018) Smartphone-based blood pressure monitoring via the oscillometric finger pressing method. Sci Transl Med 10:eaap8674. https://doi.org/10.1126/scitranslmed.aap8674

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chandrasekhar A, Yavarimanesh M, Natarajan K, Hahn JO, Mukkamala R (2020) PPG sensor contact pressure should be taken into account for cuff-less blood pressure measurement. IEEE Trans Biomed Eng 67:3134–3140. https://doi.org/10.1109/TBME.2020.2976989

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chen CH, Nevo E, Fetics B, Pak PH, Yin FC, Maughan WL, Kass DA (1997) Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure: validation of generalized transfer function. Circulation 95:1827–1836. https://doi.org/10.1161/01.cir.95.7.1827

    Article  CAS  PubMed  Google Scholar 

  8. Dogdus M, Akhan O, Ozyasar M, Yilmaz A, Altintas MS (2018) Evaluation of arterial stiffness using pulse wave velocity and augmentation index in patients with chronic venous insufficiency. Int J Vasc Med 2018:5437678. https://doi.org/10.1155/2018/5437678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dresher RP, Mendelson Y (2006) Reflectance forehead pulse oximetry: effects of contact pressure during walking. Conf Proc IEEE Eng Med Biol Soc 2006:3529–3532. https://doi.org/10.1109/IEMBS.2006.260136

    Article  PubMed  Google Scholar 

  10. Elgendi M, Fletcher R, Liang Y, Howard N, Lovell NH, Abbott D, Lim K, Ward R (2019) The use of photoplethysmography for assessing hypertension. npj Digit Med 2:60. https://doi.org/10.1038/s41746-019-0136-7

    Article  PubMed  PubMed Central  Google Scholar 

  11. El-Hajj C, Kyriacou PA (2021) Deep learning models for cuffless blood pressure monitoring from PPG signals using attention mechanism. Biomed Signal Proces 65:102301. https://doi.org/10.1016/j.bspc.2020.102301

    Article  Google Scholar 

  12. Fantin F, Mattocks A, Bulpitt CJ, Banya W, Rajkumar C (2007) Is augmentation index a good measure of vascular stiffness in the elderly? Age Ageing 36:43–48. https://doi.org/10.1093/ageing/afl115

    Article  PubMed  Google Scholar 

  13. Grabovskis A, Marcinkevics Z, Rubins U, Kviesis-Kipge E (2013) Effect of probe contact pressure on the photoplethysmographic assessment of conduit artery stiffness. J Biomed Opt 18:27004. https://doi.org/10.1117/1.JBO.18.2.027004

    Article  CAS  PubMed  Google Scholar 

  14. Holoborodko P (2008) Smooth noise robust differentiators. Available http://www.holoborodko.com/pavel/numerical-methods/numericalderivative/smooth-low-noise-differentiators/ Accessed 03 Jan 2022

  15. Hsiu H, Hsu CL, Wu TL (2011) Effects of different contacting pressure on the transfer function between finger photoplethysmographic and radial blood pressure waveforms. Proc Inst Mech Eng H 225:575–583. https://doi.org/10.1177/0954411910396288

    Article  CAS  PubMed  Google Scholar 

  16. Janner JH, Godtfredsen NS, Ladelund S, Vestbo J, Prescott E (2010) Aortic augmentation index: reference values in a large unselected population by means of the SphygmoCor device. Am J Hypertens 23:180–185. https://doi.org/10.1038/ajh.2009.234

    Article  PubMed  Google Scholar 

  17. Mc Namara K, Alzubaidi H, Jackson JK (2019) Cardiovascular disease as a leading cause of death: how are pharmacists getting involved? Integr Pharm Res Pract 8:1–11. https://doi.org/10.2147/IPRP.S133088

    Article  PubMed  PubMed Central  Google Scholar 

  18. Patvardhan E, Heffernan KS, Ruan J, Hession M, Warner P, Karas RH, Kuvin JT (2011) Augmentation index derived from peripheral arterial tonometry correlates with cardiovascular risk factors. Cardiol Res Pract 2011:253758. https://doi.org/10.4061/2011/253758

    Article  PubMed  PubMed Central  Google Scholar 

  19. Peňaz J (1973) Photoelectric measurement of blood pressure, volume and flow in the finger. Proc Dig 10th Int Conf Med Biol Eng 1973:104

    Google Scholar 

  20. Pan J, Tompkins WJ (1985) A real-time QRS detection algorithm. IEEE Trans Biomed Eng BME-32:230–236. https://doi.org/10.1109/TBME.1985.325532

    Article  Google Scholar 

  21. Pilt K, Meigas K, Ferenets R, Temitski K, Viigimaa M (2014) Photoplethysmographic signal waveform index for detection of increased arterial stiffness. Physiol Meas 35:2027–2036. https://doi.org/10.1088/0967-3334/35/10/2027

    Article  CAS  PubMed  Google Scholar 

  22. Pilt K, Silluta S, Kööts K, Karai D, Meigas K, Viigimaa M (2018) Investigation of photoplethysmographic signal augmentation index estimation differences between fingers. IFMBE Proc 65:819–822. https://doi.org/10.1007/978-981-10-5122-7_205

    Article  Google Scholar 

  23. Rafieian-Kopaei M, Setorki M, Doudi M, Baradaran A (2014) Atherosclerosis: process, indicators, risk factors and new hopes. Int J Prev Med 5:927–946

    PubMed  PubMed Central  Google Scholar 

  24. Scardulla F, D’Acquisto L, Colombarini R, Hu S, Pasta S, Bellavia D (2020) A study on the effect of contact pressure during physical activity on photoplethysmographic heart rate measurements. Sensors (Basel) 20:5052. https://doi.org/10.3390/s20185052

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Segers P, Rietzschel ER, Chirinos JA (2020) How to measure arterial stiffness in humans. Arterioscler Thromb Vasc Biol 40:1034–1043. https://doi.org/10.1161/ATVBAHA.119.313132

    Article  CAS  PubMed  Google Scholar 

  26. Shaltis P, Reisner A, Asada H (2004) A hydrostatic pressure approach to cuffless blood pressure monitoring. Conf Proc IEEE Eng Med Biol Soc 2004:2173–2176. https://doi.org/10.1109/IEMBS.2004.1403635

    Article  CAS  PubMed  Google Scholar 

  27. Sherebrin MH, Sherebrin RZ (1990) Frequency analysis of the peripheral pulse wave detected in the finger with a photoplethysmograph. IEEE Trans Biomed Eng 37:313–317. https://doi.org/10.1109/10.52332

    Article  CAS  PubMed  Google Scholar 

  28. Shirwany NA, Zou MH (2010) Arterial stiffness: a brief review. Acta Pharmacol Sin 31:1267–1276. https://doi.org/10.1038/aps.2010.123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Spigulis J (2005) Optical non-invasive monitoring of skin blood pulsations. Appl Opt 44:1850–1857. https://doi.org/10.1364/AO.44.001850

    Article  ADS  PubMed  Google Scholar 

  30. Teng XF, Zhang YT (2007) Theoretical study on the effect of sensor contact force on pulse transit time. IEEE Trans Biomed Eng 54:1490–1498. https://doi.org/10.1109/TBME.2007.900815

    Article  ADS  PubMed  Google Scholar 

  31. Townsend RR (2015) Arterial stiffness and chronic kidney disease: lessons from the chronic renal insufficiency cohort study. Curr Opin Nephrol Hypertens 24:47–53. https://doi.org/10.1097/MNH.0000000000000086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Visseren FLJ, Mach F, Smulders YM et al (2021) 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J 42:3227–3337. https://doi.org/10.1093/eurheartj/ehab484

    Article  PubMed  Google Scholar 

  33. von Wowern E, Östling G, Nilsson PM, Olofsson P (2015) Digital photoplethysmography for assessment of arterial stiffness: repeatability and comparison with applanation tonometry. PLoS One 10:e0135659. https://doi.org/10.1371/journal.pone.0135659

    Article  CAS  Google Scholar 

  34. Wilkinson IB, MacCallum H, Flint L, Cockcroft JR, Newby DE, Webb DJ (2000) The influence of heart rate on augmentation index and central arterial pressure in humans. J Physiol 525(Pt 1):263–270. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00263.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The research was funded partly by the Estonian Ministry of Education and Research under personal post-doctoral research funding PUTJD815, under Estonian Research Council grant PSG819, under institutional research financing IUT 19–2, and by Estonian Centre of Excellence in IT (EXCITE) funded by European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristjan Pilt.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pilt, K., Reiu, A. Effect of transmural pressure on the estimation of arterial stiffness index from the photoplethysmographic waveform. Med Biol Eng Comput 62, 1049–1059 (2024). https://doi.org/10.1007/s11517-023-02992-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02992-y

Keywords

Navigation