Skip to main content

Advertisement

Log in

MR image reconstruction via guided filter

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) reconstruction from the smallest possible set of Fourier samples has been a difficult problem in medical imaging field. In our paper, we present a new approach based on a guided filter for efficient MRI recovery algorithm. The guided filter is an edge-preserving smoothing operator and has better behaviors near edges than the bilateral filter. Our reconstruction method is consist of two steps. First, we propose two cost functions which could be computed efficiently and thus obtain two different images. Second, the guided filter is used with these two obtained images for efficient edge-preserving filtering, and one image is used as the guidance image, the other one is used as a filtered image in the guided filter. In our reconstruction algorithm, we can obtain more details by introducing guided filter. We compare our reconstruction algorithm with some competitive MRI reconstruction techniques in terms of PSNR and visual quality. Simulation results are given to show the performance of our new method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang H, Li B, Young AA et al (2010) Recovery of myocardial kinematic function without the time history of external loads[J]. Eur J Advances Signal Process (1):1–9

  2. Tavakoli V, Amini AA (2013) A survey of shaped-based registration and segmentation techniques for cardiac images[J]. Comp Vision Image Underst (CVIU) 117(9):966–989

    Article  Google Scholar 

  3. Cands EJ, Romberg J, Tao T (2006) Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans Inf Theory 52(2):489–509

    Article  Google Scholar 

  4. Tropp JA, Gilbert AC (2007) Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Trans Inf Theory 53(12):4655–4666

    Article  Google Scholar 

  5. Donoho DL (2006) Compressed sensing[J]. IEEE Trans Inf Theory 52(4):1289–1306

    Article  Google Scholar 

  6. Cands EJ, Wakin MB (2008) An introduction to compressive sampling[J]. IEEE Signal Process Mag 25(2):21–30

    Article  Google Scholar 

  7. Baraniuk RG (2007) Compressive sensing[J]. IEEE Signal Process Mag 24(4)

  8. Needell D, Tropp JA (2009) CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[J]. Appl Comput Harmon Anal 26(3):301–321

    Article  Google Scholar 

  9. Lustig M, Santos JM, Donoho DL, Pauly JM (2006) kt SPARSE: High frame rate dynamic MRI exploiting spatio-temporal sparsity[C]. In: Proceedings of the 13th annual meeting of ISMRM, Seattle, p 2420

  10. Gamper U, Boesiger P, Kozerke S (2008) Compressed sensing in dynamic MRI[J]. Magn Reson Med 59(2):365–373

    Article  PubMed  Google Scholar 

  11. Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: The application of compressed sensing for rapid MR imaging[J]. Magn Reson Med 58(6):1182–1195

    Article  PubMed  Google Scholar 

  12. Ravishankar S, Bresler Y (2011) MR Image reconstruction from highly undersampled k-space data by dictionary learning[J]. IEEE Trans Med Imaging 30(5):1028–1041

    Article  PubMed  Google Scholar 

  13. Patel VM, Maleh R, Gilbert AC, Chellappa R (2012) Gradient-based image recovery methods from incomplete Fourier measurements[J]. IEEE Trans Image Process 21(1):94–105

    Article  PubMed  Google Scholar 

  14. Adluru G, DiBella EVR (2008) Reordering for improved constrained reconstruction from undersampled k-space data[J]. J Biomed Imaging vol 9

  15. Ma S, Yin W, Zhang Y, Chakraborty A (2008) An efficient algorithm for compressed MR imaging using total variation and wavelets[C]. Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. IEEE, pp 1–8

  16. Yang J, Zhang Y, Yin W (2010) A fast alternating direction method for T V L 1L 2 signal reconstruction from partial Fourier data[J]. IEEE J Sel Top Sign Proces 4(2):288–297

    Article  Google Scholar 

  17. Liu B, King K, Steckner M, Xie J, Sheng J, Ying L (2009) Regularized sensitivity encoding (SENSE) reconstruction using Bregman iterations[J]. Magn Reson Med 61(1):145–152

    Article  PubMed  Google Scholar 

  18. Ramani S, Fessler JA (2011) Parallel MR image reconstruction using augmented Lagrangian methods[J]. IEEE Trans Med Imaging 30(3):694–706

    Article  PubMed  Google Scholar 

  19. Hu Y, Jacob M (2012) Higher degree total variation (HDTV) regularization for image recovery[J]. IEEE Trans Image Process 21(5):2559–2571

    Article  PubMed  Google Scholar 

  20. Elad M, Milanfar P, Rubinstein R (2007) Analysis versus synthesis in signal priors[J]. Inverse Prob 23(3):947

    Article  Google Scholar 

  21. Nam S, Davies ME, Elad M, Gribonval R (2013) The cosparse analysis model and algorithms[J]. Appl Comput Harmon Anal 34(1):30–56

    Article  Google Scholar 

  22. Giryes R, Nam S, Elad M, Gribonval R, Davies ME (2014) Greedy-like algorithms for the cosparse analysis model[J]. Linear Algebra Appl 441:22–60

    Article  Google Scholar 

  23. Liang D, Wang H, Chang Y, Ying L (2011) Sensitivity encoding reconstruction with nonlocal total variation regularization[J]. Magn Reson Med 65(5):1384–1392

    Article  PubMed  Google Scholar 

  24. Egiazarian K, Foi A, Katkovnik V (2007) Compressed sensing image reconstruction via recursive spatially adaptive filtering[C]. 2007 IEEE International Conference on Image Processing. IEEE 1:I-549-I-552

    Google Scholar 

  25. Aharon M, Elad M, Bruckstein A (2006) K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Trans Signal Process 54(11):4311–4322

    Article  Google Scholar 

  26. Li J, Song Y, Zhu Z et al (2016) Highly undersampled MR image reconstruction using an improved dual-dictionary learning method with self-adaptive dictionaries[J]. Medical & Biological Engineering & Computing pp 1–16

  27. Qu X, Guo D, Ning B, Hou Y, Lin Y, Cai S, Chen Z (2012) Undersampled MRI reconstruction with patch-based directional wavelets[J]. Magn Reson Imaging 30(7):964–977

    Article  PubMed  Google Scholar 

  28. Skretting K, Engan K (2010) Recursive least squares dictionary learning algorithm[J]. IEEE Trans Signal Process 58(4):2121–2130

    Article  Google Scholar 

  29. Yin XX, Ng BWH, Ramamohanarao K et al (2012) Exploiting sparsity and low-rank structure for the recovery of multi-slice breast MRIs with reduced sampling error[J]. Med Biol Eng Comput 50(9):991–1000

    Article  CAS  PubMed  Google Scholar 

  30. Liu Q, Wang S, Ying L, Peng X, Zhu Y, Liang D (2013) Adaptive dictionary learning in sparse gradient domain for image recovery[J]. IEEE Trans Image Process 22(12):4652–4663

    Article  PubMed  Google Scholar 

  31. He K, Sun J, Tang X (2010) Guided image filtering[C]. European conference on computer vision. Springer Berlin Heidelberg, pp 1–14

Download references

Acknowledgments

We would like to thank the anonymous reviewers for their helpful feedback. This research is supported by the National Science Foundation of China under Grant No. 61401425.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heyan Huang.

Appendix

Appendix

1.1 The derivation from Eqs. 7 and 8 to Eqs. 9 and 10

We first must be precise about our notation. In the following, we have ∥∇u − ∇u E \( \|_{2}^{2} \) = ∥∇ x u − ∇ x u E \( \|_{2}^{2} \) + ∥∇ y u − ∇ y u E \( \|_{2}^{2} \), where ∇ x represents the horizontal difference operator, and ∇ y represents the vertical differential operator.

To find the optimal value of u I , we must solve the optimization problem

$$ u_{I}\!=\arg\min\limits_{u}\{\lambda\|\nabla_{x} u-\nabla_{x} u_{E}\|_{2}^{2}+\|\nabla_{y} u-\nabla_{y} u_{E}\|_{2}^{2}+\|P \mathcal{F}u -f\|_{2}^{2}\} $$
(12)

Because this problem is differentiable, the optimality conditions for u I are easily derived. By differentiating with respect to u and setting the result equal to zero, we get the update rule

$$\begin{array}{@{}rcl@{}} &&[\lambda ({\nabla_{x}^{T}}\nabla_{x}+ {\nabla_{y}^{T}}\nabla_{y})+ \mathcal{F}^{T} P^{T} P\mathcal{F}]u\\ &&\quad=\lambda ({\nabla_{x}^{T}}\nabla_{x}+{\nabla_{y}^{T}}\nabla_{y})u_{E} + \mathcal{F}^{T} P^{T} f \end{array} $$
(13)

We now take advantage of the identities ∇T∇ = −△ and \(\phantom {\dot {i}\!}\mathcal {F}^{T}=\mathcal {F}^{-1}\) to get

$$ (\mathcal{F}^{T} P^{T} P\mathcal{F}-\lambda \triangle)u= \mathcal{F}^{T} P^{T} f -\lambda \triangle u_{E} $$
(14)

Therefore, the system that must be inverted to solve for u I is circulant. Because of the circulant structure of this system, we can solve for the optimal value of u I using only two Fourier transform. Through the Eq. 14, we can get the Eq. 9

$$ \mathcal{F} u_{I}=\frac{P^{T} f-\lambda \mathcal{F} \triangle \mathcal{F}u_{E}}{|P|^{2}-\lambda \mathcal{F} \triangle \mathcal{F}^{-1}} $$
(15)

Similarly, the problem (8) is differentiable. By differentiating with respect to u and setting the result equal to zero, we get the update rule

$$ (\beta+ \mathcal{F}^{T} P^{T} P \mathcal{F})u=\beta u_{E}+ \mathcal{F}^{T} P^{T} f $$
(16)

which is

$$ \mathcal{F}^{T}(\beta+ P^{T} P)\mathcal{F}u=\mathcal{F}^{T}(\beta \mathcal{F}u_{E}+ P^{T} f) $$
(17)

Thus, we can get the Eq. 10

$$ \mathcal{F}u_{p}=\frac{P^{T} f+\beta \mathcal{F}u_{E}}{|P|^{2}+\beta} $$
(18)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Yang, H. & Wang, K. MR image reconstruction via guided filter. Med Biol Eng Comput 56, 635–648 (2018). https://doi.org/10.1007/s11517-017-1709-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1709-8

Keywords

Navigation