Skip to main content

Advertisement

Log in

Classification of multichannel EEG patterns using parallel hidden Markov models

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

In this paper, a parallel hidden-Markov-model (PHMM)-based approach is proposed for the problem of multichannel electroencephalogram (EEG) patterns classification. The approach is based on multi-channel representation of the EEG signals using a parallel combination of HMMs, where each model represents a particular channel. The performance of the proposed algorithm is studied using an artificial EEG database, and two real EEG databases: a database of two classes of EEGs elicited during a task of imagery of hand upward and downward movements of a computer screen cursor (db Ia), and a database of two classes of sensorimotor EEGs elicited during a feedback-regulated left–right motor imagery task (db III). The results show that the proposed algorithm outperforms other commonly used methods with classification rate improvement of 2 and 10% for db Ia and db III, respectively. In addition, the proposed method outperforms a support vector machine classifier with a linear kernel, when both classifiers utilize the same feature set. The results also show that a model architecture which includes a left-to-right scheme with no skips, five states and three Gaussians, outperforms the other tested architectures due to the fact that it allows a better modeling of the temporal sequencing of the EEG components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Argunsah AO, Cetin M (2010) A brain–computer interface algorithm based on hidden markov models and dimensionality reduction. In: IEEE 18th Signal Processing and Communications Applications Conference (SIU), pp 93–96

  2. Birbaumer N, Flor H, Ghanayim N, Hinterberger TI, Iverson E, Taub B, Kotchoubey A, Kübler A, Perelmouter J (1999) Brain-controlled spelling device for the completely paralyzed. Nature 398:297–298

    Article  PubMed  CAS  Google Scholar 

  3. Blankertz B (2003) BCI competition final results. http://ida.first.fraunhofer.de/projects/bci/competition/

  4. Burke D, Kelly S, de Chazal P, Reilly R, Finucane C (2005) A parametric feature extraction and classification strategy for brain–computer interfacing. IEEE Trans Neural Syst Rehabil Eng 13(1):12–17

    Article  PubMed  Google Scholar 

  5. Chiappa S, Bengio S (2004) Hmm and iohmm modeling of EEG rhythms for asynchronous bci systems. In: European Symposium on Artificial Neural Networks

  6. Cincotti F, Scipione A, Tiniperi A, Mattia D, Marciani MG, del R. Millan J, Salinari S, Bianchi L, Babiloni F (2003) Comparison of different feature classifiers for brain computer interfaces. In: Proceedings of the 1st International IEEE EMBS Conference on Neural Engineering

  7. Deller JR, Proakis JG, Hansen JHL (2000) Discrete-time processing of speech signals. Macmillan Publishing Company, New York

  8. Donchin E, Spencer KM, Wijesinghe R (2000) The mental prosthesis: assessing the speed of a P300-based brain–computer interface. IEEE Trans Rehabil Eng 8:174–179

    Article  PubMed  CAS  Google Scholar 

  9. Friman O, Volosyak I, Graser A (2007) Multiple channel detection of steady-state visual evoked potentials for brain–computer interfaces. IEEE Trans Biomed Eng 54(4):742–750

    Article  PubMed  Google Scholar 

  10. Gupta L, Chung B, Srinath MD, Molfese DL, Kook H (2005) Multichannel fusion models for the parametric classification of differential brain activity. IEEE Trans Biomed Eng 52(11):1869–1881

    Article  PubMed  Google Scholar 

  11. Kaper M, Meinicke P, Grossekathoefer U, Lingner T, Ritter H (2004) BCI competition 2003—data set IIb: support vector machines for the p300 speller paradigm. IEEE Trans Biomed Eng 51:1073–1076

    Article  PubMed  Google Scholar 

  12. Krause CM (1999) Event-related desynchronization (ERD) and synchronization (ERS) during auditory information processing. J New Music Res 28:257–265

    Article  Google Scholar 

  13. Lee CH, Lin CH, Juang BH (1991) A study on speaker adaptation of the parameters of continuous density hidden markov models. IEEE Trans Speech Signal Proc 39(4):806–814

    Article  CAS  Google Scholar 

  14. Lemm S, Shafer C, Curio G (2004) BCI competition 2003—data set III: probabilistic modeling of sensorimotor μ rhythms for classification of imaginary hand movements. IEEE Trans Biomed Eng 51(6):1077–1080

    Article  PubMed  Google Scholar 

  15. Lotte F, Congedo M, Lécuyer A, Lamarche F, Arnaldi B (2007) A review of classification algorithms for EEG-based brain–computer interfaces. J Neural Eng 4:1–13

    Article  Google Scholar 

  16. Makhoul J (1975) Linear prediction: a tutorial review. In: Proc IEEE, vol 63

  17. Mensh BD, Wefel J, Seung HS (2004) BCI competition 2003—data set Ia: combining gamma-band power with slow cortical potentials to improve single-trial classification of electroencephalographic signals. IEEE Trans Biomed Eng 5(6):1052–1056

    Article  Google Scholar 

  18. Molfese DL (1990) Auditory evoked responses recorded from 16-month-old human infants to words they did and did not know. Brain Lang 38:345–363

    Article  PubMed  CAS  Google Scholar 

  19. Obermaier B, Guger C, Neuper C, Pfurtscheller G (2001) Hidden Markov models for online classification of single trial EEG. Pattern Recognit Lett 22:1299–1309

    Article  Google Scholar 

  20. Obermaier B, Neuper C, Guger C, Pfurtscheller G (2001) Information transfer rate in a five-classes brain–computer interface. IEEE Trans Neural Syst Rehabil Eng 9(3):283–288

    Article  PubMed  CAS  Google Scholar 

  21. Pfurtscheller G, Kalcher J, Neuper C, Flotzinger D, Pregenzer M (1996) On-line EEG classification during externally-paced hand movements using a neural network-based classifier. Elec Clin Neuro 99:416–425

    Article  CAS  Google Scholar 

  22. Pfurtscheller G, Neuper C, Flotzinger D, Pregenzer M (1997) EEG -based discrimination between imagination of right and left hand movement. Electroenceph Clin Neurophysiol 103:642–651

    Article  PubMed  CAS  Google Scholar 

  23. Quiroga RQ, Garcia H (2003) Single-trial event-related potentials with wavelet denoising. Clin Neurophysiol 114:376–390

    Article  Google Scholar 

  24. Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77(2):257–286. doi:10.1109/5.18626

    Article  Google Scholar 

  25. Rezaei S, Tavakolian K, Nasrabadi AM, Setarehdan SK (2006) Different classification techniques considering brain computer interface applications. J Neural Eng 3(2):139–144

    Article  PubMed  Google Scholar 

  26. Schalk G, Wolpaw JR, McFarland DJ, Pfurtscheller G (2000) EEG-based communication: presence of an error potential. Clin Neurophysiol 111:2138–2144

    Article  PubMed  CAS  Google Scholar 

  27. Tavakolian K, Vasefi F, Naziripour K, Rezaei S (2006) Mental task classification for brain computer interface applications. Proc First Can Conf Biomed Comput 1:56–60

    Google Scholar 

  28. Thulasidas M, Guan C, Wu J (2006) Robust classification of EEG signal for brain–computer interface. IEEE Trans Neural Syst Rehabil Eng 14(1):24–29

    Article  PubMed  Google Scholar 

  29. Wang H, Zheng W (2008) Local temporal common spatial patterns for robust single-trial EEG classification. IEEE Trans Neural Syst Rehabil Eng 16(2):131–139

    Article  PubMed  Google Scholar 

  30. Wang Y, Zhang Z, Li Y, Gao X, Gao S, Yang F (2004) BCI competition 2003—data set IV: an algorithm based on CSSD and FDA for classifying single-trial EEG. IEEE Trans Biomed Eng 51:1081–1086

    Article  PubMed  Google Scholar 

  31. Wolpaw JR, McFarland DJ (1994) Multichannel EEG-based brain–computer communication. Electroencephalogr Clin Neurophysiol 90:444–449

    Article  PubMed  CAS  Google Scholar 

  32. Wolpaw JR, McFarland DJ, Neat GW, Forneris CA (1991) An EEG-based brain–computer interface for cursor control. Elec Clin Neuro 78:252–258

    Article  CAS  Google Scholar 

  33. Wolpow J, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan T (2002) Brain–computer interfaces for communication and control. Clin Neurophysiol 113:767–791

    Article  Google Scholar 

Download references

Acknowledgments

This work was initiated by Prof. Arnon Cohen, head of the signal processing laboratory at Ben-Gurion University of the Negev who passed away during the project. By completing this work we continue his legacy of honest and fair research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dror Lederman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lederman, D., Tabrikian, J. Classification of multichannel EEG patterns using parallel hidden Markov models. Med Biol Eng Comput 50, 319–328 (2012). https://doi.org/10.1007/s11517-012-0871-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-0871-2

Keywords

Navigation