Skip to main content
Log in

ARMin: a robot for patient-cooperative arm therapy

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Task-oriented, repetitive and intensive arm training can enhance arm rehabilitation in patients with paralyzed upper extremities due to lesions of the central nervous system. There is evidence that the training duration is a key factor for the therapy progress. Robot-supported therapy can improve the rehabilitation allowing more intensive training. This paper presents the kinematics, the control and the therapy modes of the arm therapy robot ARMin. It is a haptic display with semi-exoskeleton kinematics with four active and two passive degrees of freedom. Equipped with position, force and torque sensors the device can deliver patient-cooperative arm therapy taking into account the activity of the patient and supporting him/her only as much as needed. The haptic display is combined with an audiovisual display that is used to present the movement and the movement task to the patient. It is assumed that the patient-cooperative therapy approach combined with a multimodal display can increase the patient’s motivation and activity and, therefore, the therapeutic progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Aisen ML, Krebs HI, Hogan N, McDowell F, Volpe BT (1997) The effect of robot-assisted therapy and rehabilitive training on motor recovery following stroke. Arch Neurol 54:443–446

    Google Scholar 

  2. Bayona NA, Bitensky J, Salter K, Teasell R (2005) The role of task-specific training in rehabilitation therapies. Top Stroke Rehabil 12:58–65

    Google Scholar 

  3. Ellis RE, Ismaeil OM, Lipsett M (1996) Design and evaluation of a high-performance haptic interface. Robotica 14:321–327

    Google Scholar 

  4. Emken JL, Bobrow JE, Reinjkensmeyer DJ (2005) Robotic movement training as an optimization problem: designing a controller that can assist only as needed. In: Proceedings of ICORR 2005, 9th international conference rehabilitation robotics, pp 307–312

  5. Finley MA, Fasoli SE, Dipietro L, Ohlhoff J, Macclellan L, Meister C et al (2005) Short-duration robotic therapy in stroke patients with severe upper-limb motor impairment. J Rehab Res Dev 42(5):683–691

    Article  Google Scholar 

  6. Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5(7):1688–1703

    Google Scholar 

  7. Harwin W, Loureiro R, Amirabdollahian F, Taylor M, Johnson G, Stokes E, Coote S, Topping M, Collin C et al (2001) In: Marincek C et al (eds) The Gentle/s project: a new method for delivering neuro-rehabilitation, asistive technology-added value to the quality of life AAATE’01.ISO Press, Amsterdam, pp 36–41

    Google Scholar 

  8. Herzog W, Nigg BM (1994) Biomechanics of the Muskulo-skeletal system. Wiley, Chichester

    Google Scholar 

  9. Hesse S, Werner C, Pohl M, Rueckriem S, Mehrholz J, Lingnau ML (2005) Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke 36(9):1960–1966

    Article  Google Scholar 

  10. Hogan N (1985a) Impedance control: an approach to manipulation: Part I—theory. ASME J Dyn Syst Meas Control 107(11):1–7

    MATH  Google Scholar 

  11. Hogan N (1985b) Impedance control: an approach to manipulation: Part II—implementation. ASME J Dyn Syst Meas Control 107(11):8–16

    MATH  Google Scholar 

  12. Hogan N (1985c) Impedance control: an approach to manipulation: Part III—applications. ASME J Dyn Syst Meas Control 107(11):17–24

    Article  MATH  Google Scholar 

  13. Hogan N, Krebs HI, Rohrer B, Palazzolo JJ, Dipietro L, Fasoli SE, Stein J, Hughes R, Frontera WR, Lynch D, Volpe BT (2006) Motions or muscles? Some behavioral factors underlying robotic assistance of motor recovery. J Rehab Res Dev 43(5):605–618

    Article  Google Scholar 

  14. Jack D, Boian R, Merians AS, Tremaine M, Burdea GC, Adamovich SV, Recce M, Poizner H (2001) Virtual reality-enhanced stroke rehabilitation. IEEE Trans Neural Syst Rehab Eng 9(3):308–318

    Article  Google Scholar 

  15. Jung-Hoon H, Ronald CA, Dong-Soo K (2003) Mobile robots at your fingertip: Bezier curve on-line trajectory generation for supervisory control. IEEE International conference of intelligent robots and systems

  16. Krebs HI, Hogan N, Aisen ML, Volpe BT (1998) Robot-Aided Neurorehabilitation. IEEE Trans Rehab Eng 6:75–87

    Article  Google Scholar 

  17. Kwakkel G, Wagenaar RC, Koelman TW, Lankhorst GJ, Koetsier JC (1997) Effects of intensity of rehabilitation after stroke. A research synthesis. Stroke 28:1550–1556

    Google Scholar 

  18. Kwakkel G, Wagenaar RC, Twisk JWE, Langkhorst GJ, Koetsier JC (1999) Intersity of leg and arm training after primary middle-celebral artery stroke: a randomised trial. Lancet 35:191–196

    Article  Google Scholar 

  19. Kwakkel G, Kollen BJ, Wagenaar RC (2002) Long therm effects of upper and lower limb training after stroke: a randomised trial. J Neurol Neurosurg Psychiat 72:473–479

    Google Scholar 

  20. Luft AR, McCombe-Waller S, Whitall J, Forrester LW, Macko R, Sorkin JD, Schulz JB, Goldberg AP, Hanley DF (2004) Repetitive bilateral arm training and motor cortex activation in chronic stroke—a randomized controlled trial. JAMA 292:1853–1861

    Article  Google Scholar 

  21. Lum PS, Burgar CG, Shor PC, Majmundar M, Van der Loos M (2002) Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehab 83(7):952–959

    Article  Google Scholar 

  22. Langhammer B, Stanghelle JK (2000) Bobath or motor relearning programme? A comparison of two different approaches of physiotherapy in stroke rehabilitation: a randomised controlled study. Clin Rehabil 14:361–369

    Article  Google Scholar 

  23. Mihelj M, Nef T, Riener R (2007) A novel paradigm for patient cooperative control of upper limb rehabilitation robots. Adv Robot 21(8):843–867

    Article  Google Scholar 

  24. Nef T, Colombo G, Riener R (2005) ARMin—robot for movement therapy of the upper extremities. Automatisierungstechnik 53(12):597–606

    Article  Google Scholar 

  25. Platz T (2003) Evidenzbasierte Armrehabilitation: Eine systematische Literaturübersicht. Nervenarzt 74:841–849

    Article  Google Scholar 

  26. Prange GB, Jannink MJ, Groothuis-Oudshoorn CG, Hermens HJ, IJzerman MJ (2006) Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev 43(2):171–184

    Article  Google Scholar 

  27. Riener R, Nef T, Colombo G (2005) Robot-aided neurorehabilitation for the upper extremities. Med Biol Eng Comput 43:2–10

    Article  Google Scholar 

  28. Riener R, Lünenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V (2005) Cooperative subject-centered strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehab Eng 13:380–393

    Article  Google Scholar 

  29. Sanchez RJ, Liu J, Rao S, Shah P, Smith R, Rahman T, Cramer SC, Bobrow JE, Reinkensmeyer DJ (2006) Automating arm movement training following severe stroke: functinal exercise with quantitative feedback in a gravity-reduced environment. IEEE Trans Neural Syst Rehabil Eng 14(3):378–389

    Article  Google Scholar 

  30. Schouten AC, de Vlugt E, van der Helm FCT, Brouwn GG (2004) Optimal posture control of a musculo-skeletal arm model. Biol Cybern 84(2):143–152

    Article  Google Scholar 

  31. Siciliano B, Villani L (1999) Robot force control. Kluwer, Boston

    MATH  Google Scholar 

  32. Stein J, Krebs HI, Frontera WR, Fasoli SE, Hughes R, Hogan N (2004) Comparison of two techniques of robot-aided upper limb exercise training after stroke. Am J Phys Med Rehabil 83(9):720–728

    Article  Google Scholar 

  33. Sunderland A, Tinson DJ, Bradley EL, Fletcher D, Langton HR, Wade DT (1992) Enhanced physical therapy improves recovery of arm function after stroke. A randomised clinical trial. J Neurol Neursurg Psychiatry 55:530–535

    Article  Google Scholar 

  34. Winstein CJ, Rose DK, Tan SM, Lewthwaite R, Chui HC, Azen SP (2004) A randomized controlled comparison of upper-extremity rehabilitation strategies in acute stroke: a pilot study of immediate and long-term outcomes. Arch Phys Med Rehab 85(4):620–628

    Article  Google Scholar 

  35. Winter D (1989) Biomechanics and motor control of human movement, 2 edn. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

This study was supported in part by the NCCR for Neuroplasticity and Repair, Project 8, Switzerland. We thank Dr. Gery Colombo from Hocoma AG, Volketswil, Switzerland for his contribution to this work. We also thank the occupational therapists and Prof. Dr. V. Dietz of the Balgrist University Hospital, Zürich, as well as Raphael Suard, Stéphane Kühne, Christina Perndl, Frauke Oldewurtel and Gabriela Kiefer for their contributions to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Nef.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nef, T., Mihelj, M. & Riener, R. ARMin: a robot for patient-cooperative arm therapy. Med Bio Eng Comput 45, 887–900 (2007). https://doi.org/10.1007/s11517-007-0226-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-007-0226-6

Keywords

Navigation