Skip to main content
Log in

Underestimation of intraocular pressure after photorefractive keratectomy: a biomechanical analysis

  • Original Article
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Excimer laser surgery, to correct corneal refraction, induces changes in corneal thickness and curvature. Both factors can cause measurement errors when determining intraocular pressure (IOP). This study evaluates effects of photorefractive keratectomy (PRK) on IOP measurements, using Goldmann applanation tonometry (GAT) and Applanation resonance tonometry (ART), in an in vitro model. Six porcine eyes was enucleated and pressurised to a constant IOP = 30 mmHg. After removal of the epithelium, the eyes were PRK-treated for a total of 25 dioptres. The measured IOP decreased 13.2 mmHg for GAT and 9.0 mmHg for ART. The total underestimation by GAT was larger than for ART, and a part of the ART underestimation (3.5 mmHg) was assigned to sensitivity to the change in corneal surface structure resulting from the removal of epithelium. The flat contact probe of GAT, as compared with the convex tip of ART, provided explanation for the difference in IOP measurement error after PRK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GAT:

Goldmann applanation tonometry

ART:

Applanation resonance tonometry

PTK:

Photo therapeutic keratectomy

PRK:

Photo refractive keratectomy

PZT:

Lead zirconate titanate

IOP:

Intraocular pressure (mmHg)

IOPGAT :

IOP measured with GAT (mmHg)

IOPART :

IOP measured with ART (mmHg)

IOPVC :

IOP in the vitreous chamber set by a saline column (mmHg)

CCT:

Central corneal thickness (μm)

CCTPach-Pen :

CCT measured with Pach-pen (μm)

ΔCCT:

The difference between CCTPach-Pen and CCT estimated from the expected ablanation (μm)

A :

Contact area between cornea and sensor tip (mm2)

D :

Dioptres (m−1)

Q :

Refractive power (D)

R :

Corneal curvature (mm)

F C :

Contact force (mN)

F Rigidity :

Force related to corneal rigidity

F Surface tension :

Capillary forces related to the surface tension

f :

Frequency (Hz)

β :

Coefficients in the ART model

L :

Applanation depth (mm)

L f :

Applanation depth related to “flowing” (mm)

dF C :

Change in contact force (mN)

df :

Change in resonance frequency (Hz)

dL :

Change in applanation depth (mm)

dA :

Change in contact area (mm2)

ρ :

Radius of sensor tip curvature (mm)

λ :

Proportionality constant between df/dL and dA/dL

References

  1. Bhan A, Browning AC, Shah S, Hamilton R, Dave D, Dua HS (2002) Effect of corneal thickness on intraocular pressure measurements with the pneumotonometer, Goldmann applanation tonometer, and tono-pen. Invest Ophthalmol Vis Sci 43:1389–1392

    Google Scholar 

  2. Cohan BE, Bohr DF (2001) Goldmann applanation tonometry in the conscious rat. Invest Ophthalmol Vis Sci 42:340–342

    Google Scholar 

  3. Doughty MJ, Zaman ML (2000) Human corneal thickness and its impact on intraocular pressure measures: a review and meta-analysis approach. Surv Ophthalmol 44:367–408

    Article  Google Scholar 

  4. Ehlers N, Brahmsen T, Sperling S (1975) Applanation tonometry and central corneal thickness. Acta Ophthalmol 53:34–43

    Google Scholar 

  5. Eisenberg DL, Sherman BG, Mckeown CA, Schuman JS (1998) Tonometry in adults and children. A manometric evaluation of pneumatonometry, applanation, and TonoPen in vitro and in vivo. Ophthalmology 105:1173–1181

    Article  Google Scholar 

  6. Eklund A (2002) Resonator sensor technique for medical use—an intraocular pressure measurement system. Umeå University, Umeå

    Google Scholar 

  7. Eklund A, Backlund T, Lindahl OA (2000) A resonator sensor for measurement of intraocular pressure—evaluation in an in vitro pig-eye model. Physiol Meas 21:355–367

    Article  Google Scholar 

  8. Eklund A, Bergh A, Lindahl OA (1999) A catheter tactile sensor for measuring hardness of soft tissue: measurement in a silicone model and in an in vitro human prostate model. Med Biol Eng Comput 37:618–624

    Article  Google Scholar 

  9. Eklund A, Hallberg P, Lindén C, Lindahl OA (2003) Applanation resonance sensor for measuring intraocular pressure—a continuos force and area measurement method. Invest Ophthalmol Vis Sci 44:3017–3024

    Article  Google Scholar 

  10. Eklund A, Lindén C, Backlund T, Andersson B, Lindahl OA (2003) Evaluation of applanation resonator sensors for intraocular pressure measurement, results from clinical and in vitro studies. Med Biol Eng Comput 41:190–197

    Article  Google Scholar 

  11. Feltgen N, Leifert D, Funk J (2001) Correlation between central corneal thickness, applanation tonometry, and direct intracameral IOP readings. Br J Ophthalmol 85:85–87

    Article  Google Scholar 

  12. Garzozi H, Chung H, Lang Y, Kagemann L, Harris A (2001) Intraocular pressure and photorefractive keratectomy: a comparison of three different tonometers. Cornea 20:33–36

    Article  Google Scholar 

  13. Goldmann H (1957) Applanation tonometry. In: Newell FW (eds) Glaucoma, transactions of the second conference. Josiah Macy Jr. Foundation, New York, pp 167–220

    Google Scholar 

  14. Green K (1990) Techniques of intraocular pressure determination. Lens Eye Toxic Res 7:485–489

    Google Scholar 

  15. Hallberg P, Lindén C, Lindahl OA, Bäcklund T, Eklund A (2004) Applanation resonance tonometry for intraocular pressure in humans. Physiol Meas 25:1053–1065

    Article  Google Scholar 

  16. Hallberg P, Lindén C, Lindahl OA, Bäcklund T, Eklund A (2006) Comparison of Goldmann applanation- and applanation resonance tonometry in a vertical in vitro porcine-eye model. J Med Eng Technol (in press)

  17. Kaufmann C, Bachmann LM, Thiel MA (2003) Intraocular pressure measurements using dynamic contour tonometry after laser in situ keratomileusis. Invest Ophthalmol Vis Sci 44:3790–3794

    Article  Google Scholar 

  18. Liu J, Roberts CJ (2005) Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis. J Cataract Refract Surg 31:146–155

    Article  Google Scholar 

  19. Mark H (1973) Corneal curvature in applanation tonometry. Am J Ophthalmol 76:223–224

    Google Scholar 

  20. Moses RA (1958) The Goldmann applanation tonometer. Am J Ophthalmol 46:865–869

    Google Scholar 

  21. Munger R, Dohadwala AA, Hodge WG, Jackson WB, Mintsioulis G, Damji KF (2001) Changes in measured intraocular pressure after hyperopic photorefractive keratectomy. J Cataract Refract Surg 27:1254–1262

    Article  Google Scholar 

  22. Olsen T (1986) On the calculation of power from curvature of the cornea. Br J Ophthalmol 70:152–154

    Article  Google Scholar 

  23. Omata S, Terunuma Y (1992) New tactile sensor like the human hand and its applications. Sens Actuators 35:9–15

    Article  Google Scholar 

  24. Orssengo GJ, Pye DC (1999) Determination of the true intraocular pressure and modulus of elasticity of the human cornea in vivo. Bull Math Biol 61:551–572

    Article  Google Scholar 

  25. Rosa N, Cennamo G, Breve MA, La Rana A (1998) Goldmann applanation tonometry after myopic photorefractive keratectomy. Acta Ophthalmol Scand 76:550–554

    Article  Google Scholar 

  26. Schmidt T (1957) Zur applanationtonometri an der spaltlampe. Ophthalmologica 133:337–342

    Article  Google Scholar 

  27. Siganos DS, Papastergiou GI, Moedas C (2004) Assessment of the Pascal dynamic contour tonometer in monitoring intraocular pressure in unoperated eyes and eyes after LASIK. J Cataract Refract Surg 30:746–751

    Article  Google Scholar 

  28. Whitacre MM, Stein R (1993) Sources of error with use of Goldmann-type tonometers. Surv Ophthalmol 38:1–30

    Article  Google Scholar 

  29. Whitacre MM, Stein RA, Hassanein K (1993) The effect of corneal thickness on applanation tonometry. Am J Ophthalmol 115:592–596

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Hallberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hallberg, P., Eklund, A., Santala, K. et al. Underestimation of intraocular pressure after photorefractive keratectomy: a biomechanical analysis. Med Bio Eng Comput 44, 609–618 (2006). https://doi.org/10.1007/s11517-006-0093-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-006-0093-6

Keywords

Navigation