Skip to main content
Log in

New therapeutic strategies targeting D1-type dopamine receptors for neuropsychiatric disease

  • Review
  • Published:
Frontiers in Biology

Abstract

The neurotransmitter dopamine acts via two major classes of receptors, D1-type and D2-type. D1 receptors are highly expressed in the striatum and can also be found in the cerebral cortex. Here we review the role of D1 dopamine signaling in two major domains: L-DOPA-induced dyskinesias in Parkinson’s disease and cognition in neuropsychiatric disorders. While there are many drugs targeting D2-type receptors, there are no drugs that specifically target D1 receptors. It has been difficult to use selective D1-receptor agonists for clinical applications due to issues with bioavailability, binding affinity, pharmacological kinetics, and side effects. We propose potential therapies that selectively modulate D1 dopamine signaling by targeting second messengers downstream of D1 receptors, allosteric modulators, or by making targeted modifications to D1-receptor machinery. The development of therapies specific to D1-receptor signaling could be a new frontier in the treatment of neurological and psychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ariano M A, Sibley D R (1994). Dopamine receptor distribution in the rat CNS: elucidation using anti-peptide antisera directed against D1A and D3 subtypes. Brain Res, 649(1–2): 95–110

    Article  CAS  PubMed  Google Scholar 

  • Arnsten A F, Cai J X, Murphy B L, Goldman-Rakic P S (1994). Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology (Berl), 116(2): 143–151

    Article  CAS  Google Scholar 

  • Aubert I, Guigoni C, Håkansson K, Li Q, Dovero S, Barthe N, Bioulac B H, Gross C E, Fisone G, Bloch B, Bezard E (2005). Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia. Ann Neurol, 57(1): 17–26

    Article  CAS  PubMed  Google Scholar 

  • Bartus R T, Baumann T L, Siffert J, Herzog C D, Alterman R, Boulis N, Turner D A, Stacy M, Lang A E, Lozano A M, Olanow C W (2013). Safety/feasibility of targeting the substantia nigra with AAV2- neurturin in Parkinson patients. Neurology, 80(18): 1698–1701

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bergson C, Mrzljak L, Smiley J F, Pappy M, Levenson R, Goldman-Rakic P S (1995). Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain. J Neurosci, 15(12): 7821–7836

    CAS  PubMed  Google Scholar 

  • Berthet A, Porras G, Doudnikoff E, Stark H, Cador M, Bezard E, Bloch B (2009). Pharmacological analysis demonstrates dramatic alteration of D1 dopamine receptor neuronal distribution in the rat analog of LDOPA- induced dyskinesia. J Neurosci, 29(15): 4829–4835

    Article  CAS  PubMed  Google Scholar 

  • Blanchet P J, Konitsiotis S, Chase T N (1998). Amantadine reduces levodopa-induced dyskinesias in parkinsonian monkeys. Mov Disord, 13(5): 798–802

    Article  CAS  PubMed  Google Scholar 

  • Boyden E S, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci, 8(9): 1263–1268

    Article  CAS  PubMed  Google Scholar 

  • Calabresi P, Di Filippo M, Ghiglieri V, Picconi B (2008). Molecular mechanisms underlying levodopa-induced dyskinesia. Mov Disord, 23(Suppl 3): S570–S579

  • Carter M E, de Lecea L (2011). Optogenetic investigation of neural circuits in vivo. Trends Mol Med, 17(4): 197–206

    Article  PubMed Central  PubMed  Google Scholar 

  • Castner S A, Goldman-Rakic P S (2004). Enhancement of working memory in aged monkeys by a sensitizing regimen of dopamine D1 receptor stimulation. J Neurosci, 24(6): 1446–1450

    Article  CAS  PubMed  Google Scholar 

  • Castner S A, Williams G V, Goldman-Rakic P S (2000). Reversal of antipsychotic-induced working memory deficits by short-term dopamine D1 receptor stimulation. Science, 287(5460): 2020–2022

    Article  CAS  PubMed  Google Scholar 

  • Cavanagh J F, Frank M J (2014). Frontal theta as a mechanism for cognitive control. Trends Cogn Sci, 18(8): 414–421

    Article  PubMed  Google Scholar 

  • Charifson P S, Bowen J P, Wyrick S D, Hoffman A J, Cory M, McPhail A T, Mailman R B (1989). Conformational analysis and molecular modeling of 1-phenyl-, 4-phenyl-, and 1-benzyl-1,2,3,4-tetrahydroisoquinolines as D1 dopamine receptor ligands. J Med Chem, 32(9): 2050–2058

    Article  CAS  PubMed  Google Scholar 

  • Cools R, Barker R A, Sahakian B J, Robbins T W (2001). Enhanced or impaired cognitive function in Parkinson’s disease as a function of dopaminergic medication and task demands. Cereb Cortex, 11(12): 1136–1143

    Article  CAS  PubMed  Google Scholar 

  • Cools R, D’Esposito M (2011). Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry, 69 (12): e113–e125

    Google Scholar 

  • Cools R, Stefanova E, Barker R A, Robbins T W, Owen A M (2002). Dopaminergic modulation of high-level cognition in Parkinson’s disease: the role of the prefrontal cortex revealed by PET. Brain, 125 (Pt 3): 584–594

    Article  PubMed  Google Scholar 

  • Costa A, Peppe A, Dell’Agnello G, Caltagirone C, Carlesimo G A (2009). Dopamine and cognitive functioning in de novo subjects with Parkinson’s disease: effects of pramipexole and pergolide on working memory. Neuropsychologia, 47(5): 1374–1381

    Article  PubMed  Google Scholar 

  • Creese I, Burt D R, Snyder S H (1976). Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science, 192(4238): 481–483

    Article  CAS  PubMed  Google Scholar 

  • Cui G, Jun S B, Jin X, Pham M D, Vogel S S, Lovinger D M, Costa R M (2013). Concurrent activation of striatal direct and indirect pathways during action initiation. Nature, 494(7436): 238–242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Darmopil S, Martín A B, De Diego I R, Ares S, Moratalla R (2009). Genetic inactivation of dopamine D1 but not D2 receptors inhibits LDOPA- induced dyskinesia and histone activation. Biol Psychiatry, 66 (6): 603–613

    Article  CAS  PubMed  Google Scholar 

  • Farrell M S, Pei Y, Wan Y, Yadav P N, Daigle T L, Urban D J, Lee HM, Sciaky N, Simmons A, Nonneman R J, Huang X P, Hufeisen S J, Guettier J M, Moy S S, Wess J, Caron M G, Calakos N, Roth B L (2013). A Gas DREADD mouse for selective modulation of cAMP production in striatopallidal neurons. Neuropsychopharmacology, 38 (5): 854–862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fawzi A B, Macdonald D, Benbow L L, Smith-Torhan A, Zhang H, Weig B C, Ho G, Tulshian D, Linder M E, Graziano M P (2001). SCH-202676: An allosteric modulator of both agonist and antagonist binding to G protein-coupled receptors. Mol Pharmacol, 59(1): 30–37

    CAS  PubMed  Google Scholar 

  • Feenstra M G, Teske G, Botterblom M H, De Bruin J P (1999). Dopamine and noradrenaline release in the prefrontal cortex of rats during classical aversive and appetitive conditioning to a contextual stimulus: interference by novelty effects. Neurosci Lett, 272(3): 179–182

    Article  CAS  PubMed  Google Scholar 

  • Feenstra M G, Vogel M, Botterblom M H, Joosten R N, de Bruin J P (2001). Dopamine and noradrenaline efflux in the rat prefrontal cortex after classical aversive conditioning to an auditory cue. Eur J Neurosci, 13(5): 1051–1054

    Article  CAS  PubMed  Google Scholar 

  • Fienberg A A, Hiroi N, Mermelstein P G, Song W, Snyder G L, Nishi A, Cheramy A, O’Callaghan J P, Miller D B, Cole D G, Corbett R, Haile C N, Cooper D C, Onn S P, Grace A A, Ouimet C C, White F J, Hyman S E, Surmeier D J, Girault J, Nestler E J, Greengard P (1998). DARPP-32: regulator of the efficacy of dopaminergic neurotransmission. Science, 281(5378): 838–842

    Article  CAS  PubMed  Google Scholar 

  • Flores-Hernández J, Cepeda C, Hernández-Echeagaray E, Calvert C R, Jokel E S, Fienberg A A, Greengard P, Levine M S (2002). Dopamine enhancement of NMDA currents in dissociated mediumsized striatal neurons: role of D1 receptors and DARPP-32. J Neurophysiol, 88(6): 3010–3020

    Article  PubMed  Google Scholar 

  • Frederick A L, Yano H, Trifilieff P, Vishwasrao H D, Biezonski D, Mészáros J, Urizar E, Sibley D R, Kellendonk C, Sonntag K C, Graham D L, Colbran R J, Stanwood G D, Javitch J A (2015). Evidence against dopamine D1/D2 receptor heteromers. Mol Psychiatry, doi: 10.1038/mp.2014.166

    Google Scholar 

  • Friedman J H, Lannon M C (1989). Clozapine in the treatment of psychosis in Parkinson’s disease. Neurology, 39(9): 1219–1221

    Article  CAS  PubMed  Google Scholar 

  • Fuster J (2008) The Prefrontal Cortex, 4th Edition. Academic Press, New York, NY

    Google Scholar 

  • Gangarossa G, Longueville S, De Bundel D, Perroy J, Hervé D, Girault J A, Valjent E (2012). Characterization of dopamine D1 and D2 receptor-expressing neurons in the mouse hippocampus. Hippocampus, 22(12): 2199–2207

    Article  CAS  PubMed  Google Scholar 

  • Gerfen C R, Miyachi S, Paletzki R, Brown P (2002). D1 dopamine receptor supersensitivity in the dopamine-depleted striatum results from a switch in the regulation of ERK1/2/MAP kinase. J Neurosci, 22(12): 5042–5054

    CAS  PubMed  Google Scholar 

  • Goldman-Rakic P S (1998). The cortical dopamine system: role in memory and cognition. Adv Pharmacol, 42: 707–711

    CAS  PubMed  Google Scholar 

  • Goldman-Rakic P S, Castner S A, Svensson T H, Siever L J, Williams G V (2004). Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction. Psychopharmacology (Berl), 174 (1): 3–16

    Article  CAS  Google Scholar 

  • Goldman-Rakic P S, Muly E C 3rd, Williams G V (2000). D(1) receptors in prefrontal cells and circuits. Brain Res Brain Res Rev, 31(2–3): 295–301

    Article  CAS  PubMed  Google Scholar 

  • Grace A A, Floresco S B, Goto Y, Lodge D J (2007). Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci, 30(5): 220–227

    Article  CAS  PubMed  Google Scholar 

  • Green M F, Harvey P D (2014). Cognition in schizophrenia: Past, present, and future. Schizophr Res Cogn, 1(1): e1–e9

    Google Scholar 

  • Guttman M, Seeman P (1985). L-dopa reverses the elevated density of D2 dopamine receptors in Parkinson’s diseased striatum. J Neural Transm, 64(2): 93–103

    Article  CAS  PubMed  Google Scholar 

  • Ha C M, Park D, Han J K, Jang J I, Park J Y, Hwang E M, Seok H, Chang S (2012). Calcyon forms a novel ternary complex with dopamine D1 receptor through PSD-95 protein and plays a role in dopamine receptor internalization. J Biol Chem, 287(38): 31813–31822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hagger C, Buckley P, Kenny J T, Friedman L, Ubogy D, Meltzer H Y (1993). Improvement in cognitive functions and psychiatric symptoms in treatment-refractory schizophrenic patients receiving clozapine. Biol Psychiatry, 34(10): 702–712

    Article  CAS  PubMed  Google Scholar 

  • Hall H, Sedvall G, Magnusson O, Kopp J, Halldin C, Farde L (1994). Distribution of D1- and D2-dopamine receptors, and dopamine and its metabolites in the human brain. Neuropsychopharmacology, 11 (4): 245–256

    Article  CAS  PubMed  Google Scholar 

  • Hanrieder J, Ljungdahl A, Fälth M, Mammo SE, Bergquist J, Andersson M (2011) L-DOPA-induced dyskinesia is associated with regional increase of striatal dynorphin peptides as elucidated by imaging mass spectrometry. Mol Cell Proteomics MCP 10:M111.009308

    Google Scholar 

  • Hernandez-Lopez S, Tkatch T, Perez-Garci E, Galarraga E, Bargas J, Hamm H, Surmeier D J (2000). D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLC[beta]1-IP3-calcineurin-signaling cascade. J Neurosci, 20(24): 8987–8995

    CAS  PubMed  Google Scholar 

  • Hoare S R, Coldwell M C, Armstrong D, Strange P G (2000). Regulation of human D(1), d(2(long)), d(2(short)), D(3) and D(4) dopamine receptors by amiloride and amiloride analogues. Br J Pharmacol, 130 (5): 1045–1059

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoffman B, Cho S J, Zheng W, Wyrick S, Nichols D E, Mailman R B, Tropsha A (1999). Quantitative structure-activity relationship modeling of dopamine D(1) antagonists using comparative molecular field analysis, genetic algorithms-partial least-squares, and K nearest neighbor methods. J Med Chem, 42(17): 3217–3226

    Article  CAS  PubMed  Google Scholar 

  • Jenner P (2008). Molecular mechanisms of L-DOPA-induced dyskinesia. Nat Rev Neurosci, 9(9): 665–677

    Article  CAS  PubMed  Google Scholar 

  • Karlsson P, Smith L, Farde L, Härnryd C, Sedvall G, Wiesel F A (1995). Lack of apparent antipsychotic effect of the D1-dopamine receptor antagonist SCH39166 in acutely ill schizophrenic patients. Psychopharmacology (Berl), 121(3): 309–316

    Article  CAS  Google Scholar 

  • Kätzel D, Nicholson E, Schorge S, Walker M C, Kullmann D M (2014). Chemical-genetic attenuation of focal neocortical seizures. Nat Commun, 5: 3847

    Article  PubMed Central  PubMed  Google Scholar 

  • Kemppainen N, Ruottinen H, Nâgren K, Rinne J O (2000). PET shows that striatal dopamine D1 and D2 receptors are differentially affected in AD. Neurology, 55(2): 205–209

    Article  CAS  PubMed  Google Scholar 

  • Khor S P, Hsu A (2007). The pharmacokinetics and pharmacodynamics of levodopa in the treatment of Parkinson’s disease. Curr Clin Pharmacol, 2(3): 234–243

    Article  CAS  PubMed  Google Scholar 

  • Klein C, Gordon J, Pollak L, Rabey J M (2003). Clozapine in Parkinson’s disease psychosis: 5-year follow-up review. Clin Neuropharmacol, 26(1): 8–11

    Article  CAS  PubMed  Google Scholar 

  • Kravitz A V, Freeze B S, Parker P R L, Kay K, Thwin M T, Deisseroth K, Kreitzer A C (2010). Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature, 466(7306): 622–626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • LaHoste G J, Henry B L, Marshall J F (2000). Dopamine D1 receptors synergize with D2, but not D3 or D4, receptors in the striatum without the involvement of action potentials. J Neurosci, 20(17): 6666–6671

    CAS  PubMed  Google Scholar 

  • Land B B, Narayanan N S, Liu R J, Gianessi C A, Brayton C E, Grimaldi D M, Sarhan M, Guarnieri D J, Deisseroth K, Aghajanian G K, DiLeone R J (2014). Medial prefrontal D1 dopamine neurons control food intake. Nat Neurosci, 17(2): 248–253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lapish C C, Kroener S, Durstewitz D, Lavin A, Seamans J K (2007). The ability of the mesocortical dopamine system to operate in distinct temporal modes. Psychopharmacology (Berl), 191(3): 609–625

    Article  CAS  Google Scholar 

  • Lee S P, Xie Z, Varghese G, Nguyen T, O’Dowd B F, George S R (2000). Oligomerization of dopamine and serotonin receptors. Neuropsychopharmacology, 23(4 Suppl): S32–S40

    Google Scholar 

  • Lemberger T, Parlato R, Dassesse D, Westphal M, Casanova E, Turiault M, Tronche F, Schiffmann S N, Schütz G (2007). Expression of Cre recombinase in dopaminoceptive neurons. BMC Neurosci, 8(1): 4

    Article  PubMed Central  PubMed  Google Scholar 

  • LeWitt P A, Rezai A R, Leehey M A, Ojemann S G, Flaherty A W, Eskandar E N, Kostyk S K, Thomas K, Sarkar A, Siddiqui M S, Tatter S B, Schwalb J M, Poston K L, Henderson J M, Kurlan R M, Richard I H, Van Meter L, Sapan C V, During M J, Kaplitt M G, Feigin A (2011). AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol, 10(4): 309–319

    Article  CAS  PubMed  Google Scholar 

  • Lidow M S, Goldman-Rakic P S, Gallager D W, Rakic P (1991). Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autoradiographic analysis using [3H]raclopride, [3H] spiperone and [3H]SCH23390. Neuroscience, 40(3): 657–671

    Article  CAS  PubMed  Google Scholar 

  • Mailman R B, Murthy V (2010). Third generation antipsychotic drugs: partial agonism or receptor functional selectivity? Curr Pharm Des, 16(5): 488–501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mattila P M, Röyttä M, Lönnberg P, Marjamäki P, Helenius H, Rinne J O (2001). Choline acetytransferase activity and striatal dopamine receptors in Parkinson’s disease in relation to cognitive impairment. Acta Neuropathol, 102(2): 160–166

    CAS  PubMed  Google Scholar 

  • Narayanan N S, Guarnieri D J, DiLeone R J (2010). Metabolic hormones, dopamine circuits, and feeding. Front Neuroendocrinol, 31(1): 104–112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Narayanan N S, Land B B, Solder J E, Deisseroth K, DiLeone R J (2012). Prefrontal D1 dopamine signaling is required for temporal control. Proc Natl Acad Sci USA, 109(50): 20726–20731

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Narayanan N S, Rodnitzky R L, Uc E Y (2013). Prefrontal dopamine signaling and cognitive symptoms of Parkinson’s disease. Rev Neurosci, 24(3): 267–278

    PubMed  Google Scholar 

  • Neumeyer J L, Kula N S, Bergman J, Baldessarini R J (2003). Receptor affinities of dopamine D1 receptor-selective novel phenylbenzazepines. Eur J Pharmacol, 474(2–3): 137–140

    Article  CAS  PubMed  Google Scholar 

  • Parker K L, Alberico S L, Miller A D, Narayanan N S (2013a). Prefrontal D1 dopamine signaling is necessary for temporal expectation during reaction time performance. Neuroscience, 255: 246–254

    Article  CAS  PubMed  Google Scholar 

  • Parker K L, Chen K H, Kingyon J R, Cavanagh J F, Narayanan N S (2014). D1-dependent 4 Hz oscillations and ramping activity in rodent medial frontal cortex during interval timing. J Neurosci, 34 (50): 16774–16783

    Article  PubMed Central  PubMed  Google Scholar 

  • Parker K L, Lamichhane D, Caetano M S, Narayanan N S (2013b). Executive dysfunction in Parkinson’s disease and timing deficits. Front Integr Neurosci, 7: 75

    Article  PubMed Central  PubMed  Google Scholar 

  • Perreault ML, Hasbi A, O’Dowd B F, George S R (2011). The dopamine d1-d2 receptor heteromer in striatal medium spiny neurons: evidence for a third distinct neuronal pathway in Basal Ganglia. Front Neuroanat, 5: 31

    PubMed Central  PubMed  Google Scholar 

  • Phillips A G, Ahn S, Floresco S B (2004). Magnitude of dopamine release in medial prefrontal cortex predicts accuracy of memory on a delayed response task. J Neurosci, 24(2): 547–553

    Article  CAS  PubMed  Google Scholar 

  • Pifl C, Nanoff C, Schingnitz G, Schütz W, Hornykiewicz O (1992). Sensitization of dopamine-stimulated adenylyl cyclase in the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated rhesus monkeys and patients with idiopathic Parkinson’s disease. J Neurochem, 58(6): 1997–2004

    Article  CAS  PubMed  Google Scholar 

  • Pisani A, Shen J (2009). Levodopa-induced dyskinesia and striatal signaling pathways. Proc Natl Acad Sci USA, 106(9): 2973–2974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pizzolato G, Chierichetti F, Fabbri M, Cagnin A, Dam M, Ferlin G, Battistin L (1996). Reduced striatal dopamine receptors in Alzheimer’s disease: single photon emission tomography study with the D2 tracer [123I]-IBZM. Neurology, 47(4): 1065–1068

    Article  CAS  PubMed  Google Scholar 

  • Porras G, Berthet A, Dehay B, Li Q, Ladepeche L, Normand E, Dovero S, Martinez A, Doudnikoff E, Martin-Négrier M L, Chuan Q, Bloch B, Choquet D, Boué-Grabot E, Groc L, Bezard E (2012). PSD-95 expression controls L-DOPA dyskinesia through dopamine D1 receptor trafficking. J Clin Invest, 122(11): 3977–3989

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rashid A J, So C H, Kong M M C, Furtak T, El-Ghundi M, Cheng R, O’Dowd B F, George S R (2007). D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc Natl Acad Sci USA, 104(2): 654–659

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rektorová I, Rektor I, Bares M, Dostál V, Ehler E, Fanfrdlová Z, Fiedler J, Klajblová H, Kulist’ák P, Ressner P, Svátová J, Urbánek K, Velísková J (2005). Cognitive performance in people with Parkinson’s disease and mild or moderate depression: effects of dopamine agonists in an add-on to L-dopa therapy. Eur J Neurol, 12 (1): 9–15

    Article  PubMed  Google Scholar 

  • Roberts B M, Seymour P A, Schmidt C J, Williams G V, Castner S A (2010). Amelioration of ketamine-induced working memory deficits by dopamine D1 receptor agonists. Psychopharmacology (Berl), 210 (3): 407–418

    Article  CAS  PubMed  Google Scholar 

  • Rodnitzky R L, Narayanan N S (2014). Amantadine’s role in the treatment of levodopa-induced dyskinesia. Neurology, 82(4): 288–289

    Article  PubMed  Google Scholar 

  • Rossetti Z L, Carboni S (2005). Noradrenaline and dopamine elevations in the rat prefrontal cortex in spatial working memory. J Neurosci, 25 (9): 2322–2329

    Article  CAS  PubMed  Google Scholar 

  • Santana N, Mengod G, Artigas F (2009). Quantitative analysis of the expression of dopamine D1 and D2 receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex, 19(4): 849–860

    Article  PubMed  Google Scholar 

  • Santini E, Valjent E, Usiello A, Carta M, Borgkvist A, Girault J A, Hervé D, Greengard P, Fisone G (2007). Critical involvement of cAMP/ DARPP-32 and extracellular signal-regulated protein kinase signaling in L-DOPA-induced dyskinesia. J Neurosci, 27(26): 6995–7005

    Article  CAS  PubMed  Google Scholar 

  • Sawaguchi T, Goldman-Rakic P S (1991). D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science, 251 (4996): 947–950

    Article  CAS  PubMed  Google Scholar 

  • Sawaguchi T, Goldman-Rakic P S (1994). The role of D1-dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. J Neurophysiol, 71(2): 515–528

    CAS  PubMed  Google Scholar 

  • Schultz W (1997). Dopamine neurons and their role in reward mechanisms. Curr Opin Neurobiol, 7(2): 191–197

    Article  CAS  PubMed  Google Scholar 

  • Schultz W (2001). Reward signaling by dopamine neurons. Neuroscientist, 7(4): 293–302

    Article  CAS  PubMed  Google Scholar 

  • Seeman P (1987). Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse, 1(2): 133–152

    Article  CAS  PubMed  Google Scholar 

  • Seeman P, Chau-Wong M, Tedesco J, Wong K (1975). Brain receptors for antipsychotic drugs and dopamine: direct binding assays. Proc Natl Acad Sci USA, 72(11): 4376–4380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sesack S R, Carr D B, Omelchenko N, Pinto A (2003). Anatomical substrates for glutamate-dopamine interactions: evidence for specificity of connections and extrasynaptic actions. Ann N Y Acad Sci, 1003(1): 36–52

    Article  CAS  PubMed  Google Scholar 

  • Shuen J A, Chen M, Gloss B, Calakos N (2008). Drd1a-tdTomato BAC transgenic mice for simultaneous visualization of medium spiny neurons in the direct and indirect pathways of the basal ganglia. J Neurosci, 28(11): 2681–2685

    Article  CAS  PubMed  Google Scholar 

  • Soriano A, Vendrell M, Gonzalez S, Mallol J, Albericio F, Royo M, Lluís C, Canela E I, Franco R, Cortés A, Casadó V (2010). A hybrid indoloquinolizidine peptide as allosteric modulator of dopamine D1 receptors. J Pharmacol Exp Ther, 332(3): 876–885

    Article  CAS  PubMed  Google Scholar 

  • Sun P, Wang J, Gu W, Cheng W, Jin G Z, Friedman E, Zheng J, Zhen X (2009). PSD-95 regulates D1 dopamine receptor resensitization, but not receptor-mediated Gs-protein activation. Cell Res, 19(5): 612–624

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Kato M, Takano H, Arakawa R, Okumura M, Otsuka T, Kodaka F, Hayashi M, Okubo Y, Ito H, Suhara T (2008). Differential contributions of prefrontal and hippocampal dopamine D(1) and D(2) receptors in human cognitive functions. J Neurosci, 28(46): 12032–12038

    Article  CAS  PubMed  Google Scholar 

  • Taylor J L, Bishop C, Walker P D (2005). Dopamine D1 and D2 receptor contributions to L-DOPA-induced dyskinesia in the dopaminedepleted rat. Pharmacol Biochem Behav, 81(4): 887–893

    Article  CAS  PubMed  Google Scholar 

  • Taymans J M, Kia H K, Groenewegen H J, Leysen J E, Langlois X (2005). Bilateral control of brain activity by dopamine D1 receptors: evidence from induction patterns of regulator of G protein signaling 2 and c-fos mRNA in D1-challenged hemiparkinsonian rats. Neuroscience, 134(2): 643–656

    Article  CAS  PubMed  Google Scholar 

  • Ungless M A, Magill P J, Bolam J P (2004). Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science, 303(5666): 2040–2042

    Article  CAS  PubMed  Google Scholar 

  • Vijayraghavan S, Wang M, Birnbaum S G, Williams G V, Arnsten A F T (2007). Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci, 10(3): 376–384

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Kodama T, Hikosaka K (1997). Increase of extracellular dopamine in primate prefrontal cortex during a working memory task. J Neurophysiol, 78(5): 2795–2798

    CAS  PubMed  Google Scholar 

  • Westin J E, Vercammen L, Strome E M, Konradi C, Cenci M A (2007). Spatiotemporal pattern of striatal ERK1/2 phosphorylation in a rat model of L-DOPA-induced dyskinesia and the role of dopamine D1 receptors. Biol Psychiatry, 62(7): 800–810

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilkinson L S, Humby T, Killcross A S, Torres E M, Everitt B J, Robbins T W (1998). Dissociations in dopamine release in medial prefrontal cortex and ventral striatum during the acquisition and extinction of classical aversive conditioning in the rat. Eur J Neurosci, 10(3): 1019–1026

    Article  CAS  PubMed  Google Scholar 

  • Williams G V, Goldman-Rakic P S (1995). Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature, 376(6541): 572–575

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka M, Matsumoto M, Togashi H, Saito H (1996). Effect of conditioned fear stress on dopamine release in the rat prefrontal cortex. Neurosci Lett, 209(3): 201–203

    Article  CAS  PubMed  Google Scholar 

  • Zahrt J, Taylor J R, Mathew R G, Arnsten A F T (1997). Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci, 17(21): 8528–8535

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandakumar S. Narayanan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, YC., Alberico, S.L., Emmons, E. et al. New therapeutic strategies targeting D1-type dopamine receptors for neuropsychiatric disease. Front. Biol. 10, 230–238 (2015). https://doi.org/10.1007/s11515-015-1360-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-015-1360-4

Keywords

Navigation