Abstract
RasGRP proteins are activators of Ras and other related small GTPases by the virtue of functioning as guanine nucleotide exchange factors (GEFs). In vertebrates, four RasGRP family members have been described. RasGRP-1 through -4 share many structural domains but there are also subtle differences between each of the different family members. Whereas SOS RasGEFs are ubiquitously expressed, RasGRP proteins are expressed in distinct patterns, such as in different cells of the hematopoietic system and in the brain. Most studies have concentrated on the role of RasGRP proteins in the development and function of immune cell types because of the predominant RasGRP expression profiles in these cells and the immune phenotypes of mice deficient for Rasgrp genes. However, more recent studies demonstrate that RasGRPs also play an important role in tumorigenesis. Examples are skin- and hematologicalcancers but also solid malignancies such as melanoma or prostate cancer. These novel studies bring up many new and unanswered questions related to the molecular mechanism of RasGRP-driven oncogenesis, such as new receptor systems that RasGRP appears to respond to as well as regulatory mechanisms for RasGRP expression that appear to be perturbed in these cancers. Here we will review some of the known aspects of RasGRP biology in lymphocytes and will discuss the exciting new notion that RasGRP Ras exchange factors play a role in oncogenesis downstream of various growth factor receptors.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Abel E L, Angel J M, Kiguchi K, DiGiovanni J (2009). Multi-stage chemical carcinogenesis in mouse skin: fundamentals and applica- tions. Nat Protoc, 4(9): 1350–1362
Adachi R, Krilis S A, Nigrovic P A, Hamilton M J, Chung K, Thakurdas S M, Boyce J A, Anderson P, Stevens R L (2012). Ras guanine nucleotide-releasing protein-4 (RasGRP4) involvement in experimental arthritis and colitis. J Biol Chem, 287(24): 20047–20055
Ahearn I M, Haigis K, Bar-Sagi D, Philips M R (2012). Regulating the regulator: post-translational modification of RAS. Nat Rev Mol Cell Biol, 13(1): 39–51
Ahuja H, Foti A, Bar-Eli M, Cline M (1990). The pattern of mutational involvement of RAS genes in human hematologic malignancies determined by DNA amplification and direct sequencing. Blood, 75: 1684–1690
Aiba Y, Oh-hora M, Kiyonaka S, Kimura Y, Hijikata A, Mori Y, Kurosaki T (2004). Activation of RasGRP3 by phosphorylation of Thr-133 is required for B cell receptor-mediated Ras activation. Proc Natl Acad Sci USA, 101(47): 16612–16617
Aifantis I, Raetz E, Buonamici S (2008). Molecular pathogenesis of Tcell leukaemia and lymphoma. Nat Rev Immunol, 8(5): 380–390
Alberola-Ila J, Hogquist K A, Swan K A, Bevan M J, Perlmutter R M (1996). Positive and negative selection invoke distinct signaling pathways. J Exp Med, 184(1): 9–18
Balgobind B V, Van Vlierberghe P, van den Ouweland A M W, Beverloo H B, Terlouw-Kromosoeto J N R, van Wering E R, Reinhardt D, Horstmann M, Kaspers G J L, Pieters R, Zwaan C M, Van den Heuvel-Eibrink M M, Meijerink J P (2008). Leukemiaassociated NF1 inactivation in patients with pediatric T-ALL and AML lacking evidence for neurofibromatosis. Blood, 111(8): 4322–4328
Barata J T, Cardoso A A, Boussiotis V A (2005). Interleukin-7 in T-cell acute lymphoblastic leukemia: an extrinsic factor supporting leukemogenesis? Leuk Lymphoma, 46(4): 483–495
Barata J T, Keenan T D, Silva A, Nadler L M, Boussiotis V A, Cardoso A A (2004a). Common gamma chain-signaling cytokines promote proliferation of T-cell acute lymphoblastic leukemia. Haematologica, 89(12): 1459–1467
Barata J T, Silva A, Brandao J G, Nadler L M, Cardoso A A, Boussiotis V A (2004b). Activation of PI3K is indispensable for interleukin 7- mediated viability, proliferation, glucose use, and growth of T cell acute lymphoblastic leukemia cells. J Exp Med, 200(5): 659–669
Beaulieu N, Zahedi B, Goulding R E, Tazmini G, Anthony K V, Omeis S L, de Jong D R, Kay R J (2007). Regulation of RasGRP1 by B cell antigen receptor requires cooperativity between three domains controlling translocation to the plasma membrane. Mol Biol Cell, 18(8): 3156–3168
Bell J J, Bhandoola A (2008). The earliest thymic progenitors for T cells possess myeloid lineage potential. Nature, 452(7188): 764–767
Benschop R J, Cambier J C (1999). B cell development: signal transduction by antigen receptors and their surrogates. Curr Opin Immunol, 11(2): 143–151
Bergmeier W, Goerge T, Wang H W, Crittenden J R, Baldwin A C W, Cifuni S M, Housman D E, Graybiel A M, Wagner D D (2007). Mice lacking the signaling molecule CalDAG-GEFI represent a model for leukocyte adhesion deficiency type III. J Clin Invest, 117(6): 1699–1707
Berquam-Vrieze K E, Nannapaneni K, Brett B T, Holmfeldt L, Ma J, Zagorodna O, Jenkins N A, Copeland N G, Meyerholz D K, Knudson C M, Mullighan C G, Scheetz T E, Dupuy A J (2011). Cell of origin strongly influences genetic selection in a mouse model of T-ALL. Blood, 118(17): 4646–4656
Bivona T G, Pérez De Castro I, Ahearn I M, Grana T M, Chiu V K, Lockyer P J, Cullen P J, Pellicer A, Cox A D, Philips M R (2003). Phospholipase Cgamma activates Ras on the Golgi apparatus by means of RasGRP1. Nature, 424(6949): 694–698
Bos J L, Rehmann H, Wittinghofer A (2007). GEFs and GAPs: critical elements in the control of small G proteins. Cell, 129(5): 865–877
Botelho R J, Harrison R E, Stone J C, Hancock J F, Philips M R, Jongstra-Bilen J, Mason D, Plumb J, Gold M R, Grinstein S (2009). Localized diacylglycerol-dependent stimulation of Ras and Rap1 during phagocytosis. J Biol Chem, 284(42): 28522–28532
Boykevisch S, Zhao C, Sondermann H, Philippidou P, Halegoua S, Kuriyan J, Bar-Sagi D (2006). Regulation of ras signaling dynamics by Sos-mediated positive feedback. Curr Biol, 16(21): 2173–2179
Brodie C, Steinhart R, Kazimirsky G, Rubinfeld H, Hyman T, Ayres J N, Hur G M, Toth A, Yang D, Garfield S H, Stone J C, Blumberg P M (2004). PKCdelta associates with and is involved in the phosphorylation of RasGRP3 in response to phorbol esters. Mol Pharmacol, 66(1): 76–84
Cambier J C, Gauld S B, Merrell K T, Vilen B J (2007). B-cell anergy: from transgenic models to naturally occurring anergic B cells? Nat Rev Immunol, 7(8): 633–643
Carbo C, Duerschmied D, Goerge T, Hattori H, Sakai J, Cifuni S M, White G C 2nd, Chrzanowska-Wodnicka M, Luo H R, Wagner D D (2010). Integrin-independent role of CalDAG-GEFI in neutrophil chemotaxis. J Leukoc Biol, 88(2): 313–319
Chakraborty A K, Roose J P (2013). Biochemical heterogeneity and developmental varieties in T-cell leukemia. Cell Cycle, 12(10): 1480–1481
Chan S M, Weng A P, Tibshirani R, Aster J C, Utz P J (2007). Notch signals positively regulate activity of the mTOR pathway in T-cell acute lymphoblastic leukemia. Blood, 110(1): 278–286
Chang L, Karin M (2001). Mammalian MAP kinase signalling cascades. Nature, 410(6824): 37–40
Chiarini F, Falà F, Tazzari P L, Ricci F, Astolfi A, Pession A, Pagliaro P, McCubrey J A, Martelli A M (2009). Dual inhibition of class IA phosphatidylinositol 3-kinase and mammalian target of rapamycin as a new therapeutic option for T-cell acute lymphoblastic leukemia. Cancer Res, 69(8): 3520–3528
Chung J B, Silverman M, Monroe J G (2003). Transitional B cells: step by step towards immune competence. Trends Immunol, 24(6): 343–349
Cifuni S M, Wagner D D, Bergmeier W (2008). CalDAG-GEFI and protein kinase C represent alternative pathways leading to activation of integrin alphaIIbbeta3 in platelets. Blood, 112(5): 1696–1703
Clyde-Smith J, Silins G, Gartside M, Grimmond S, Etheridge M, Apolloni A, Hayward N, Hancock J F (2000). Characterization of RasGRP2, a plasma membrane-targeted, dual specificity Ras/Rap exchange factor. J Biol Chem, 275(41): 32260–32267
Corey S J, Minden M D, Barber D L, Kantarjian H, Wang J C Y, Schimmer A D (2007). Myelodysplastic syndromes: the complexity of stem-cell diseases. Nat Rev Cancer, 7(2): 118–129
Coughlin J J, Stang S L, Dower N A, Stone J C (2005). RasGRP1 and RasGRP3 regulate B cell proliferation by facilitating B cell receptor-Ras signaling. J Immunol (Baltimore, Md: 1950) 175(11): 7179–7184
Coustan-Smith E, Mullighan C G, Onciu M, Behm F G, Raimondi S C, Pei D, Cheng C, Su X, Rubnitz J E, Basso G, Biondi A, Pui C H, Downing J R, Campana D (2009). Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol, 10(2): 147–156
Crittenden J R, Bergmeier W, Zhang Y, Piffath C L, Liang Y, Wagner D D, Housman D E, Graybiel A M (2004). CalDAG-GEFI integrates signaling for platelet aggregation and thrombus formation. Nat Med, 10(9): 982–986
Dail M, Li Q, McDaniel A, Wong J, Akagi K, Huang B, Kang H C, Kogan S C, Shokat K, Wolff L, Braun B S, Shannon K (2010). Mutant Ikzf1, KrasG12D, and Notch1 cooperate in T lineage leukemogenesis and modulate responses to targeted agents. Proc Natl Acad Sci USA, 107(11): 5106–5111
Dal Porto J M, Gauld S B, Merrell K T, Mills D, Pugh-Bernard A E, Cambier J (2004). B cell antigen receptor signaling 101. Mol Immunol, 41(6–7): 599–613
Daniels M A, Teixeiro E, Gill J, Hausmann B, Roubaty D, Holmberg K, Werlen G, Holländer G A, Gascoigne N R J, Palmer E (2006). Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature, 444(7120): 724–729
Das J, Ho M, Zikherman J, Govern C, Yang M, Weiss A, Chakraborty A K, Roose J P (2009). Digital signaling and hysteresis characterize ras activation in lymphoid cells. Cell, 136(2): 337–351
de la Luz Sierra M, Sakakibara S, Gasperini P, Salvucci O, Jiang K, McCormick P J, Segarra M, Stone J, Maric D, Zhu J, Qian X, Lowy D R, Tosato G (2010). The transcription factor Gfi1 regulates G-CSF signaling and neutrophil development through the Ras activator RasGRP1. Blood, 115(19): 3970–3979
DeAngelo D J (2006). A phase I clinical trial of the notch inhibitor MK-0752 in patients with T-cell acute lymphoblastic leukemia (T-ALL) and other leukemias. J Clin Oncol, 24(18 Suppl): 6585
DeFranco A L (2000). B-cell activation 2000. Immunol Rev, 176: 5–9
Diaz-Flores E, Hana Goldschmidt, Philippe Depeille, Victor Ng, Kimberly Krisman, Michael Crone, Michael R. Burgess, Olusegun Williams, Benjamin Houseman, Kevan Shokat, et al. (2013). PLCγ and PI3 kinase link cytokine stimulation to ERK activation in primary hematopoietic cells expressing normal and oncogenic Kras. Science Signaling, (In press)
Diehn M, Alizadeh A A, Rando O J, Liu C L, Stankunas K, Botstein D, Crabtree G R, Brown P O (2002). Genomic expression programs and the integration of the CD28 costimulatory signal in T cell activation. Proc Natl Acad Sci USA, 99(18): 11796–11801
Diez F R, Garrido A A, Sharma A, Luke C T, Stone J C, Dower N A, Cline J M, Lorenzo P S (2009). RasGRP1 transgenic mice develop cutaneous squamous cell carcinomas in response to skin wounding: potential role of granulocyte colony-stimulating factor. Am J Pathol, 175(1): 392–399
Dower N A, Stang S L, Bottorff D A, Ebinu J O, Dickie P, Ostergaard H L, Stone J C (2000). RasGRP is essential for mouse thymocyte differentiation and TCR signaling. Nat Immunol, 1(4): 317–321
Dührsen U, Stahl J, Gough NM (1990). In vivo transformation of factordependent hemopoietic cells: role of intracisternal A-particle transposition for growth factor gene activation. EMBO J, 9(4): 1087–1096
Ebinu J O, Bottorff D A, Chan E Y, Stang S L, Dunn R J, Stone J C (1998). RasGRP, a Ras guanyl nucleotide- releasing protein with calcium- and diacylglycerol-binding motifs. Science, 280(5366): 1082–1086
Ebinu J O, Stang S L, Teixeira C, Bottorff D A, Hooton J, Blumberg P M, Barry M, Bleakley R C, Ostergaard H L, Stone J C (2000). RasGRP links T-cell receptor signaling to Ras. Blood, 95(10): 3199–3203
Emanuel P D, Bates L J, Castleberry R P, Gualtieri R J, Zuckerman K S (1991). Selective hypersensitivity to granulocyte-macrophage colony-stimulating factor by juvenile chronic myeloid leukemia hematopoietic progenitors. Blood, 77(5): 925–929
Feldman B J, Feldman D (2001). The development of androgen-independent prostate cancer. Nat Rev Cancer, 1(1): 34–45
Ferrando A A, Neuberg D S, Staunton J, Loh M L, Huard C, Raimondi S C, Behm F G, Pui C H, Downing J R, Gilliland D G, Lander E S, Golub T R, Look A T (2002). Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell, 1(1): 75–87
Feske S (2007). Calcium signalling in lymphocyte activation and disease. Nat Rev Immunol, 7(9): 690–702
Friday B B, Adjei A A (2005). K-ras as a target for cancer therapy. Biochimica et Biophysica Acta (BBA) — Rev Can, 1756: 127–144
Fuller D M, Zhu M, Song X, Ou-Yang C W, Sullivan S A, Stone J C, Zhang W (2012). Regulation of RasGRP1 function in T cell development and activation by its unique tail domain. PLoS ONE, 7(6): e38796
Ghandour H, Cullere X, Alvarez A, Luscinskas F W, Mayadas T N (2007). Essential role for Rap1 GTPase and its guanine exchange factor CalDAG-GEFI in LFA-1 but not VLA-4 integrin mediated human T-cell adhesion. Blood, 110(10): 3682–3690
Gifford J L, Walsh M P, Vogel H J (2007). Structures and metal-ionbinding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochem J, 405(2): 199–221
Golec D P, Dower N A, Stone J C, Baldwin T A (2013). RasGRP1, but not RasGRP3, is required for efficient thymic β-selection and ERK activation downstream of CXCR4. PLoS ONE, 8(1): e53300
Goodnow C C, Crosbie J, Jorgensen H, Brink R A, Basten A (1989). Induction of self-tolerance in mature peripheral B lymphocytes. Nature, 342(6248): 385–391
Grabarek Z (2006). Structural basis for diversity of the EF-hand calciumbinding proteins. J Mol Biol, 359(3): 509–525
Grabher C, von Boehmer H, Look A T (2006). Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat Rev Cancer, 6(5): 347–359
Graux C, Cools J, Michaux L, Vandenberghe P, Hagemeijer A (2006). Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast. Leukemia, 20(9): 1496–1510
Grisendi S, Mecucci C, Falini B, Pandolfi P P (2006). Nucleophosmin and cancer. Nat Rev Cancer, 6(7): 493–505
Guilbault B, Kay R J (2004). RasGRP1 sensitizes an immature B cell line to antigen receptor-induced apoptosis. J Biol Chem, 279(19): 19523–19530
Gutierrez A, Sanda T, Grebliunaite R, Carracedo A, Salmena L, Ahn Y, Dahlberg S, Neuberg D, Moreau L A, Winter S S, Larson R, Zhang J, Protopopov A, Chin L, Pandolfi P P, Silverman L B, Hunger S P, Sallan S E, Look A T (2009). High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood, 114(3): 647–650
Hartzell C, Ksionda O, Lemmens E, Coakley K, Yang M, Dail M, Harvey R C, Govern C, Bakker J, Lenstra T L, Ammon K, Boeter A, Winter S S, Loh M, Shannon K, Chakraborty A K, Wabl M, Roose J P (2013). Dysregulated RasGRP1 responds to cytokine receptor input in T cell leukemogenesis. Sci Signal, 6(268): ra21
Hertz M, Nemazee D (1997). BCR ligation induces receptor editing in IgM+IgD— bone marrow B cells in vitro. Immunity, 6(4): 429–436
Izquierdo M, Downward J, Graves J D, Cantrell D A (1992). Role of protein kinase C in T-cell antigen receptor regulation of p21ras: evidence that two p21ras regulatory pathways coexist in T cells. Mol Cell Biol, 12(7): 3305–3312
Janas ML, Turner M (2011). Interaction of Ras with P110 is required for thymic-selection in the mouse. J Immunol (Baltimore, Md: 1950) 187: 4667–4675
Johnson J E, Goulding R E, Ding Z, Partovi A, Anthony K V, Beaulieu N, Tazmini G, Cornell R B, Kay R J (2007). Differential membrane binding and diacylglycerol recognition by C1 domains of RasGRPs. Biochem J, 406(2): 223–236
Jun J E, Ignacio Rubio, Roose J P (2013). Regulation of Ras exchange factors and cellular localization of Ras activation by lipid messengers in T cells. Fronit Immunol, (In press) doi: 10.3389/fimmu.2013.00239
Kawamura M, Ohnishi H, Guo S X, Sheng X M, Minegishi M, Hanada R, Horibe K, Hongo T, Kaneko Y, Bessho F, Yanagisawa M, Sekiya T, Hayashi Y (1999). Alterations of the p53, p21, p16, p15 and RAS genes in childhood T-cell acute lymphoblastic leukemia. Leuk Res, 23(2): 115–126
Kawasaki H, Springett GM, Toki S, Canales J J, Harlan P, Blumenstiel J P, Chen E J, Bany I A, Mochizuki N, Ashbacher A, Matsuda M, Housman D E, Graybiel A M (1998). A Rap guanine nucleotide exchange factor enriched highly in the basal ganglia. Proc Natl Acad Sci USA, 95(22): 13278–13283
Khandanpour C, Phelan J D, Vassen L, Schütte J, Chen R, Horman S R, Gaudreau M C, Krongold J, Zhu J, Paul W E, Dührsen U, Göttgens B, Grimes H L, Möröy T (2013). Growth factor independence 1 antagonizes a p53-induced DNA damage response pathway in lymphoblastic leukemia. Cancer Cell, 23(2): 200–214
Kim R, Trubetskoy A, Suzuki T, Jenkins N A, Copeland N G, Lenz J (2003). Genome-based identification of cancer genes by proviral tagging in mouse retrovirus-induced T-cell lymphomas. J Virol, 77(3): 2056–2062
Klein L, Hinterberger M, Wirnsberger G, Kyewski B (2009). Antigen presentation in the thymus for positive selection and central tolerance induction. Nat Rev Immunol, 9(12): 833–844
Klinger M B, Guilbault B, Goulding R E, Kay R J (2005). Deregulated expression of RasGRP1 initiates thymic lymphomagenesis independently of T-cell receptors. Oncogene, 24(16): 2695–2704
Knudsen B S, Edlund M (2004). Prostate cancer and the met hepatocyte growth factor receptor. Adv Cancer Res, 91: 31–67
Koike K, Matsuda K (2008). Recent advances in the pathogenesis and management of juvenile myelomonocytic leukaemia. Br J Haematol, 141(5): 567–575
Kortum R L, Rouquette-Jazdanian A K, Samelson L E (2013). Ras and extracellular signal-regulated kinase signaling in thymocytes and T cells. Trends Immunol, 34(6): 1–10
Kortum R L, Sommers C L, Alexander C P, Pinski J M, Li W, Grinberg A, Lee J, Love P E, Samelson L E (2011). Targeted Sos1 deletion reveals its critical role in early T-cell development. Proc Natl Acad Sci USA, 108(30): 12407–12412
Kortum R L, Sommers C L, Pinski J M, Alexander C P, Merrill R K, Li W, Love P E, Samelson L E (2012). Deconstructing Ras signaling in the thymus. Mol Cell Biol, 32(14): 2748–2759
Kremer K N, Kumar A, Hedin K E (2011). G i2 and ZAP-70 mediate RasGRP1 membrane localization and activation of SDF-1-induced T cell functions. J Immunol (Baltimore, Md: 1950), 187: 3177–3185
Kurosaki T (1999). Genetic analysis of B cell antigen receptor signaling. Annu Rev Immunol, 17(1): 555–592
Lam K P, Kühn R, Rajewsky K (1997). In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell, 90(6): 1073–1083
Lauchle J O, Kim D, Le D T, Akagi K, Crone M, Krisman K, Warner K, Bonifas J M, Li Q, Coakley K M, Diaz-Flores E, Gorman M, Przybranowski S, Tran M, Kogan S C, Roose J P, Copeland N G, Jenkins N A, Parada L, Wolff L, Sebolt-Leopold J, Shannon K (2009). Response and resistance to MEK inhibition in leukaemias initiated by hyperactive Ras. Nature, 461(7262): 411–414
Lee J R, Koretzky G A (1998). Extracellular signal-regulated kinase-2, but not c-Jun NH2-terminal kinase, activation correlates with surface IgM-mediated apoptosis in the WEHI 231 B cell line. J Immunol, 161(4): 1637–1644
Lee M J, Ye A S, Gardino A K, Heijink A M, Sorger P K, MacBeath G, Yaffe M B (2012). Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell, 149(4): 780–794
Lee S H, Yun S, Lee J, Kim MJ, Piao Z-H, Jeong M, Chung JW, Kim TD, Yoon S R, Greenberg P D, Choi I (2009). RasGRP1 is required for human NK cell function. J Immunol (Baltimore, Md: 1950) 183: 7931–7938
Li L, Yang Y, Wong G W, Stevens R L (2003). Mast cells in airway hyporesponsive C3H/HeJ mice express a unique isoform of the signaling protein Ras guanine nucleotide releasing protein 4 that is unresponsive to diacylglycerol and phorbol esters. J Immunol (Baltimore, Md: 1950), 171: 390–397
Limnander A, Depeille P, Freedman T S, Liou J, Leitges M, Kurosaki T, Roose J P, Weiss A (2011). STIM1, PKC-δ and RasGRP set a threshold for proapoptotic Erk signaling during B cell development. Nat Immunol, 12(5): 425–433
Limnander A, Weiss A (2011). Ca-dependent Ras/Erk signaling mediates negative selection of autoreactive B cells. Small GTPases, 2(5): 282–288
Lorenzo P S, Beheshti M, Pettit G R, Stone J C, Blumberg P M (2000). The guanine nucleotide exchange factor RasGRP is a high-affinity target for diacylglycerol and phorbol esters. Mol Pharmacol, 57(5): 840–846
Lorenzo P S, Kung JW, Bottorff D A, Garfield S H, Stone J C, Blumberg P M (2001). Phorbol esters modulate the Ras exchange factor RasGRP3. Cancer Res, 61(3): 943–949
Luke C T, Oki-Idouchi C E, Cline J M, Lorenzo P S (2007). RasGRP1 overexpression in the epidermis of transgenic mice contributes to tumor progression during multistage skin carcinogenesis. Cancer Res, 67(21): 10190–10197
Maser R S, Choudhury B, Campbell P J, Feng B, Wong K K, Protopopov A, O’Neil J, Gutierrez A, Ivanova E, Perna I, Lin E, Mani V, Jiang S, McNamara K, Zaghlul S, Edkins S, Stevens C, Brennan C, Martin E S, Wiedemeyer R, Kabbarah O, Nogueira C, Histen G, Aster J, Mansour M, Duke V, Foroni L, Fielding A K, Goldstone A H, Rowe J M, Wang Y A, Look A T, Stratton M R, Chin L, Futreal P A, DePinho R A (2007). Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature, 447(7147): 966–971
Melamed D, Benschop R J, Cambier J C, Nemazee D (1998). Developmental regulation of B lymphocyte immune tolerance compartmentalizes clonal selection from receptor selection. Cell, 92(2): 173–182
Mikkers H, Allen J, Knipscheer P, Romeijn L, Hart A, Vink E, Berns A, Romeyn L (2002). High-throughput retroviral tagging to identify components of specific signaling pathways in cancer. Nat Genet, 32(1): 153–159
Mor A, Philips M R (2006). Compartmentalized Ras/MAPK signaling. Annu Rev Immunol, 24(1): 771–800
Navarro M N, Goebel J, Feijoo-Carnero C, Morrice N, Cantrell D A (2011). Phosphoproteomic analysis reveals an intrinsic pathway for the regulation of histone deacetylase 7 that controls the function of cytotoxic T lymphocytes. Nat Immunol, 12(4): 352–361
Norment AM, Bogatzki L Y, Klinger M, Ojala EW, Bevan MJ, Kay R J (2003). Transgenic expression of RasGRP1 induces the maturation of double-negative thymocytes and enhances the production of CD8 single-positive thymocytes. J Immunol (Baltimore, Md: 1950), 170: 1141–1149
Oh-hora M, Johmura S, Hashimoto A, Hikida M, Kurosaki T (2003). Requirement for Ras guanine nucleotide releasing protein 3 in coupling phospholipase C-gamma2 to Ras in B cell receptor signaling. J Exp Med, 198(12): 1841–1851
Oki T, Kitaura J, Watanabe-Okochi N, Nishimura K, Maehara A, Uchida T, Komeno Y, Nakahara F, Harada Y, Sonoki T, Harada H, Kitamura T (2011). Aberrant expression of RasGRP1 cooperates with gain-offunction NOTCH1 mutations in T-cell leukemogenesis. Leukemia
Oki-Idouchi C E, Lorenzo P S (2007). Transgenic overexpression of RasGRP1 in mouse epidermis results in spontaneous tumors of the skin. Cancer Res, 67(1): 276–280
Palomero T, Barnes K C, Real P J, Glade Bender J L, Sulis M L, Murty V V, Colovai A I, Balbin M, Ferrando A A (2006a). CUTLL1, a novel human T-cell lymphoma cell line with t(7;9) rearrangement, aberrant NOTCH1 activation and high sensitivity to gammasecretase inhibitors. Leukemia, 20(7): 1279–1287
Palomero T, Lim W K, Odom D T, Sulis M L, Real P J, Margolin A, Barnes K C, O’Neil J, Neuberg D, Weng A P, Aster J C, Sigaux F, Soulier J, Look A T, Young R A, Califano A, Ferrando AA (2006b). NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Nat Acad Sci U S A, 103(48): 18261–18266
Palomero T, Sulis M L, Cortina M, Real P J, Barnes K, Ciofani M, Caparros E, Buteau J, Brown K, Perkins S L, Bhagat G, Agarwal A M, Basso G, Castillo M, Nagase S, Cordon-Cardo C, Parsons R, Zúñiga-Pflücker J C, Dominguez M, Ferrando A A (2007). Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med, 13(10): 1203–1210
Pawson T, Linding R (2008). Network medicine. FEBS Lett, 582(8): 1266–1270
Perez-Losada J, Balmain A (2003). Stem-cell hierarchy in skin cancer. Nat Rev Cancer, 3(6): 434–443
Pieters R, Carroll W L, (2008). Biology and treatment of acute lymphoblastic leukemia. Pediatric Clinics of NA 24: 1–20
Pillai S (1999). The chosen few? Positive selection and the generation of naive B lymphocytes. Immunity, 10(5): 493–502
Pillai S, Cariappa A (2009). The follicular versus marginal zone B lymphocyte cell fate decision. Nat Rev Immunol, 9(11): 767–777
Pillai S, Cariappa A, Moran S T (2004). Positive selection and lineage commitment during peripheral B-lymphocyte development. Immunol Rev, 197(1): 206–218
Priatel J J, Teh S J, Dower N A, Stone J C, Teh H S (2002). RasGRP1 transduces low-grade TCR signals which are critical for T cell development, homeostasis, and differentiation. Immunity, 17(5): 617–627
Rajalingam K, Schreck R, Rapp U R, Albert S (2007). Ras oncogenes and their downstream targets. Biochim Biophys Acta, 1773(8): 1177–1195
Rambaratsingh R A, Stone J C, Blumberg P M, Lorenzo P S (2003). RasGRP1 represents a novel non-protein kinase C phorbol ester signaling pathway in mouse epidermal keratinocytes. J Biol Chem, 278(52): 52792–52801
Ratushny V, Gober M D, Hick R, Ridky TW, Seykora J T (2012). From keratinocyte to cancer: the pathogenesis and modeling of cutaneous squamous cell carcinoma. J Clin Invest, 122(2): 464–472
Reuther G W, Lambert Q T, Rebhun J F, Caligiuri M A, Quilliam L A, Der C J (2002). RasGRP4 is a novel Ras activator isolated from acute myeloid leukemia. J Biol Chem, 277(34): 30508–30514
Roberts D M, Anderson A L, Hidaka M, Swetenburg R L, Patterson C, Stanford W L, Bautch V L (2004). A vascular gene trap screen defines RasGRP3 as an angiogenesis-regulated gene required for the endothelial response to phorbol esters. Mol Cell Biol, 24(24): 10515–10528
Rogers S Y, Bradbury D, Kozlowski R, Russell N H (1994). Evidence for internal autocrine regulation of growth in acute myeloblastic leukemia cells. Exp Hematol, 22(7): 593–598
Roose J P, Mollenauer M, Gupta V A, Stone J, Weiss A (2005). A diacylglycerol-protein kinase C-RasGRP1 pathway directs Ras activation upon antigen receptor stimulation of T cells. Mol Cell Biol, 25(11): 4426–4441
Roose J P, Mollenauer M, Ho M, Kurosaki T, Weiss A (2007). Unusual interplay of two types of Ras activators, RasGRP and SOS, establishes sensitive and robust Ras activation in lymphocytes. Mol Cell Biol, 27(7): 2732–2745
Ruiz S, Santos E, Bustelo X R (2007). RasGRF2, a guanosine nucleotide exchange factor for Ras GTPases, participates in T-cell signaling responses. Mol Cell Biol, 27(23): 8127–8142
Sharma A, Luke C T, Dower N A, Stone J C, Lorenzo P S (2010). RasGRP1 is essential for ras activation by the tumor promoter 12-Otetradecanoylphorbol- 13-acetate in epidermal keratinocytes. J Biol Chem, 285(21): 15724–15730
Silva A, Laranjeira A B A, Martins L R, Cardoso B A, Demengeot J, Yunes J A, Seddon B, Barata J T (2011). IL-7 contributes to the progression of human T-cell acute lymphoblastic leukemias. Cancer Res, 71(14): 4780–4789
Smith-Garvin J E, Koretzky G A, Jordan M S (2009). T cell activation. Annu Rev Immunol, 27(1): 591–619
Stang S L, Lopez-Campistrous A, Song X, Dower N A, Blumberg P M, Wender P A, Stone J C (2009). A proapoptotic signaling pathway involving RasGRP, Erk, and Bim in B cells. Exp Hematol, 37(1): 122–134, 134.e2
Starr T K, Jameson S C, Hogquist K A (2003). Positive and negative selection of T cells. Annu Rev Immunol, 21(1): 139–176
Stolla M, Stefanini L, André P, Ouellette T D, Reilly M P, McKenzie S E, Bergmeier W (2011). CalDAG-GEFI deficiency protects mice in a novel model of Fcγ RIIA-mediated thrombosis and thrombocytopenia. Blood, 118(4): 1113–1120
Stone J C (2011). Regulation and Function of the RasGRP Family of Ras Activators in Blood Cells. Genes & Cancer, 2: 320–334
Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian Z R, Du J, Davis A, Mongare M M, Gould J, Frederick D T, Cooper Z A, Chapman P B, Solit D B, Ribas A, Lo R S, Flaherty K T, Ogino S, Wargo J A, Golub T R (2012). Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature, 487(7408): 500–504
Su T T, Guo B, Wei B, Braun J, Rawlings D J (2004). Signaling in transitional type 2 B cells is critical for peripheral B-cell development. Immunol Rev, 197(1): 161–178
Subramaniam P S, Whye D W, Efimenko E, Chen J, Tosello V, De Keersmaecker K, Kashishian A, Thompson M A, Castillo M, Cordon-Cardo C, Davé U P, Ferrando A, Lannutti B J, Diacovo T G (2012). Targeting nonclassical oncogenes for therapy in T-ALL. Cancer Cell, 21(4): 459–472
Suire S, Lécureuil C, Anderson K E, Damoulakis G, Niewczas I, Davidson K, Guillou H, Pan D, Clark J, Hawkins P T, Stephens L (2012). GPCR activation of Ras and PI3Kγ in neutrophils depends on PLCβ2/β3 and the RasGEF RasGRP4. EMBO J, 31(14): 3118–3129
Suzuki T, Shen H, Akagi K, Morse H C, Malley J D, Naiman D Q, Jenkins N A, Copeland N G (2002). New genes involved in cancer identified by retroviral tagging. Nat Genet, 32(1): 166–174
Tazmini G, Beaulieu N, Woo A, Zahedi B, Goulding R E, Kay R J (2009). Membrane localization of RasGRP1 is controlled by an EFhand, and by the GEF domain. Biochim Biophys Acta, 1793(3): 447–461
Teixeira C, Stang S L, Zheng Y, Beswick N S, Stone J C (2003). Integration of DAG signaling systems mediated by PKC-dependent phosphorylation of RasGRP3. Blood, 102(4): 1414–1420
Torres R M, Flaswinkel H, Reth M, Rajewsky K (1996). Aberrant B cell development and immune response in mice with a compromised BCR complex. Science, 272(5269): 1804–1808
Townsend S E, Weintraub B C, Goodnow C C (1999). Growing up on the streets: why B-cell development differs from T-cell development. Immunol Today, 20(5): 217–220
Vassiliou G S, Cooper J L, Rad R, Li J, Rice S, Uren A, Rad L, Ellis P, Andrews R, Banerjee R, Grove C, Wang W, Liu P, Wright P, Arends M, Bradley A (2011). Mutant nucleophosmin and cooperating pathways drive leukemia initiation and progression in mice. Nat Genet, 43(5): 470–475
Vetter I R, Wittinghofer A (2001). The guanine nucleotide-binding switch in three dimensions. Science, 294(5545): 1299–1304
Vigil D, Cherfils J, Rossman K L, Der C J (2010). Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer, 10(12): 842–857
Vogelstein B, Papadopoulos N, Velculescu V E, Zhou S, Diaz L A Jr, Kinzler K W (2013). Cancer genome landscapes. Science, 339(6127): 1546–1558
von Lintig F C, Huvar I, Law P, Diccianni M B, Yu A L, Boss G R (2000). Ras activation in normal white blood cells and childhood acute lymphoblastic leukemia. Clin Cancer Res, 6(5): 1804–1810
Wada H, Masuda K, Satoh R, Kakugawa K, Ikawa T, Katsura Y, Kawamoto H (2008). Adult T-cell progenitors retain myeloid potential. Nature, 452(7188): 768–772
Ward A F, Braun B S, Shannon K M (2012). Targeting oncogenic Ras signaling in hematologic malignancies. Blood, 120(17): 3397–3406
Watanabe-Okochi N, Oki T, Komeno Y, Kato N, Yuji K, Ono R, Harada Y, Harada H, Hayashi Y, Nakajima H, Nosaka T, Kitaura J, Kitamura T (2009). Possible involvement of RasGRP4 in leukemogenesis. Int J Hematol, 89(4): 470–481
Weng A P, Ferrando A A, Lee W, Morris J P 4th, Silverman L B, Sanchez-Irizarry C, Blacklow S C, Look A T, Aster J C (2004). Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science, 306(5694): 269–271
Weng A P, Millholland J M, Yashiro-Ohtani Y, Arcangeli M L, Lau A, Wai C, Del Bianco C, Rodriguez C G, Sai H, Tobias J, Li Y, Wolfe M S, Shachaf C, Felsher D, Blacklow S C, Pear W S, et al Aster J C (2006). c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes & Dev, 20: 2096–2109
Wilson T R, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E, Peng J, Lin E, Wang Y, Sosman J, Ribas A, Li J, Moffat J, Sutherlin D P, Koeppen H, Merchant M, Neve R, Settleman J (2012). Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature, 487(7408): 505–509
Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S, Asou N, Kuriyama K, Yagasaki F, Shimazaki C, Akiyama H, Saito K, Nishimura M, Motoji T, Shinagawa K, Takeshita A, Saito H, Ueda R, Ohno R, Naoe T (2001). Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood, 97(8): 2434–2439
Yamashita S, Mochizuki N, Ohba Y, Tobiume M, Okada Y, Sawa H, Nagashima K, Matsuda M (2000). CalDAG-GEFIII activation of Ras, R-ras, and Rap1. J Biol Chem, 275(33): 25488–25493
Yang D, Kedei N, Li L, Tao J, Velasquez J F, Michalowski A M, Tóth B I, Marincsák R, Varga A, Bíró T, Yuspa S H, Blumberg P M (2010). RasGRP3 contributes to formation and maintenance of the prostate cancer phenotype. Cancer Res, 70(20): 7905–7917
Yang D, Tao J, Li L, Kedei N, Tóth Z E, Czap A, Velasquez J F, Mihova D, Michalowski A M, Yuspa S H, Blumberg P M (2011). RasGRP3, a Ras activator, contributes to signaling and the tumorigenic phenotype in human melanoma. 30: 4590–460
Yang Y, Li L, Wong G W, Krilis S A, Madhusudhan M S, Sali A, Stevens R L (2002). RasGRP4, a new mast cell-restricted Ras guanine nucleotide-releasing protein with calcium- and diacylglycerol- binding motifs. Identification of defective variants of this signaling protein in asthma, mastocytosis, and mast cell leukemia patients and demonstration of the importance of RasGRP4 in mast cell development and function. J Biol Chem, 277(28): 25756–25774
Yasuda T, Kometani K, Takahashi N, Imai Y, Aiba Y, Kurosaki T (2011). ERKs induce expression of the transcriptional repressor Blimp-1 and subsequent plasma cell differentiation. Sci Signal, 4(169): ra25
Yasuda T, Kurosaki T (2008). Regulation of lymphocyte fate by Ras/ ERK signals. Cell Cycle, 7(23): 3634–3640
Yasuda T, Sanjo H, Pagès G, Kawano Y, Karasuyama H, Pouysségur J, Ogata M, Kurosaki T (2008). Erk kinases link pre-B cell receptor signaling to transcriptional events required for early B cell expansion. Immunity, 28(4): 499–508
Yokota S, Nakao M, Horiike S, Seriu T, Iwai T, Kaneko H, Azuma H, Oka T, Takeda T, Watanabe A, Kikuta A, Asami K, Sekine I, Matsushita T, Tsuhciya T, Mimaya J, Koizumi S, Miyake M, Nishikawa K, Takaue Y, Kawano Y, Iwai A, Ishida Y, Matsumoto K, Fujimoto T (1998). Mutational analysis of the N-ras gene in acute lymphoblastic leukemia: a study of 125 Japanese pediatric cases. Int J Hematol, 67(4): 379–387
Young D C, Griffin J D (1986). Autocrine secretion of GM-CSF in acute myeloblastic leukemia. Blood, 68(5): 1178–1181
Zahedi B, Goo H J, Beaulieu N, Tazmini G, Kay R J, Cornell R B (2011). Phosphoinositide 3-kinase regulates plasma membrane targeting of the Ras-specific exchange factor RasGRP1. J Biol Chem, 286(14): 12712–12723
Zenatti P P, Ribeiro D, Li W, Zuurbier L, Silva M C, Paganin M, Tritapoe J, Hixon J A, Silveira A B, Cardoso B A, Sarmento L M, Correia N, Toribio M L, Kobarg J, Horstmann M, Pieters R, Brandalise S R, Ferrando A A, Meijerink J P, Durum S K, Yunes J A, Barata J T (2011). Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat Genet, 43(10): 932–939
Zhang J, Ding L, Holmfeldt L, Wu G, Heatley S L, Payne-Turner D, Easton J, Chen X, Wang J, Rusch M, Lu C, Chen S C, Wei L, Collins-Underwood J R, Ma J, Roberts K G, Pounds S B, Ulyanov A, Becksfort J, Gupta P, Huether R, Kriwacki R W, Parker M, McGoldrick D J, Zhao D, Alford D, Espy S, Bobba K C, Song G, Pei D, Cheng C, Roberts S, Barbato M I, Campana D, Coustan-Smith E, Shurtleff S A, Raimondi S C, Kleppe M, Cools J, Shimano K A, Hermiston M L, Doulatov S, Eppert K, Laurenti E, Notta F, Dick J E, Basso G, Hunger S P, Loh M L, Devidas M, Wood B, Winter S, Dunsmore K P, Fulton R S, Fulton L L, Hong X, Harris C C, Dooling D J, Ochoa K, Johnson K J, Obenauer J C, Evans W E, Pui C H, Naeve C W, Ley T J, Mardis E R, Wilson R K, Downing J R, Mullighan C G (2012). The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature, 481(7380): 157–163
Zheng Y, Liu H, Coughlin J, Zheng J, Li L, Stone J C (2005). Phosphorylation of RasGRP3 on threonine 133 provides a mechanistic link between PKC and Ras signaling systems in B cells. Blood, 105(9): 3648–3654
Zhu M, Fuller DM, Zhang W (2012). The role of Ras guanine nucleotide releasing protein 4 in Fc epsilonRI-mediated signaling, mast cell function, and T cell development. J Biol Chem, 287(11): 8135–8143
Zikherman J, Parameswaran R, Weiss A (2012). Endogenous antigen tunes the responsiveness of naive B cells but not T cells. Nature, 489(7414): 160–164
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ksionda, O., Limnander, A. & Roose, J.P. RasGRP Ras guanine nucleotide exchange factors in cancer. Front. Biol. 8, 508–532 (2013). https://doi.org/10.1007/s11515-013-1276-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11515-013-1276-9