Skip to main content
Log in

Effects of the Cations Li+, Na+, K+, Mg2+, or Ca2+ on Physicochemical Properties of Xanthan Gum in Aqueous Medium – A view from Computational Molecular Dynamics Calculations

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The evaluation of intra- and intermolecular interactions of xanthan gum (XG) in aqueous systems containing salts is essential to understand the effects of such substances on the physicochemical properties of XG dispersions. In this study, XG dispersions with KCl, LiCl, NaCl, MgCland CaCl(ionic strength = 150 mmol∙L−1), or without any salt, were prepared. Cations from different chloride salts had no significant influence on the apparent viscosity of the dispersions (p-value < 0.05). However, the presence of cations increased the density of dispersions, except in the case of that containing Li+. Molecular dynamics (MD) simulations were undertaken seeking to gain insights into the interactions underlying such findings. Compared to the control system (without salt), the presence of cations induced an increase in intramolecular interactions of XG, especially through hydrogen bonds (H-bonds) between the main chain and the side chains. When considering the cations' net electric charges, XG side chains interacted more favorably with divalent ones (Mg2+ and Ca2+). When the cations were grouped according to their relative size, XG side chains interacted more favorably with those with smaller radii (Mg2+ and Li+). Hence, the effects of cations on XG conformational features in aqueous media (and the relationships of these features with dispersions' densities) varied not only with their net electric charges, but also with their ionic radii. These findings were all described and discussed in terms of interaction energies, H-bonds formation patterns, as well as different structure descriptors such as XG root-mean-square deviation (RMSD), XG solvent accessible surface area (SASA) and cations' radial distribution function (RDF) around the polysaccharide chain.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author E. C. Valente, upon reasonable request.

Abbreviations

CGD :

Carboxyl groups in the residue D of XG side chain

CGE :

Carboxyl groups in the residue E of XG side chain

H-bonds:

Hydrogen bonds interactions

K :

Consistency index (Pa∙sn)

MD:

Molecular dynamics

n :

Flow behavior index (dimensionless)

NPT:

Constant number of particles, pressure, and temperature

NVT:

Constant number of particles, volume, and temperature

R2 :

Coefficient of determination

RDF:

Radial distribution function

RMSD:

Root-mean-square deviation

SASA:

Surface area accessible to the solvent

XG:

Xanthan gum

τ:

Shear stress (Pa)

\(\dot{{\varvec{\gamma}}}\) :

Shear rate (s−1)

η100 :

Apparent viscosity at the shear rate \(\dot{\gamma }\) = 100 s−1 (mPa⋅s)

References

  1. N. Jindal, J. Singh Khattar, in Biopolym. Food Des. (Elsevier Inc., 2018), pp. 95–123

  2. H. Habibi, K. Khosravi-Darani, Biocatal. Agric. Biotechnol. 10, 130 (2017)

    Article  CAS  Google Scholar 

  3. A. Mohsin, H. Ni, Y. Luo, Y. Wei, X. Tian, W. Guan, M. Ali, I.M. Khan, S. Niazi, S. ur Rehman, Y. Zhuang, M. Guo, LWT 108, 61 (2019)

    Article  CAS  Google Scholar 

  4. A. Kumar, K.M. Rao, S.S. Han, Carbohydr. Polym. 180, 128 (2018)

    Article  CAS  PubMed  Google Scholar 

  5. P.-E. Jansson, L. Kenne, B. Lindberg, Carbohydr. Res. 45, 275 (1975)

    Article  CAS  PubMed  Google Scholar 

  6. B. Urlacher, O. Noble, in Thick. Gelling Agents Food, A. Imeson (1997), pp. 284–311

  7. C.E. Brunchi, M. Bercea, S. Morariu, M. Dascalu, J. Polym. Res. 23, 1 (2016)

    Article  CAS  Google Scholar 

  8. E. Choppe, F. Puaud, T. Nicolai, L. Benyahia, Carbohydr. Polym. 82, 1228 (2010)

    Article  CAS  Google Scholar 

  9. D. Reinoso, M.J. Martín-Alfonso, P.F. Luckham, F.J. Martínez-Boza, Carbohydr. Polym. 203, 103 (2019)

    Article  CAS  PubMed  Google Scholar 

  10. Z.R.N. Galván, L. de S. Soares, E.A.A. Medeiros, N. de F.F. Soares, A.M. Ramos, J.S. dos R. Coimbra, E.B. de Oliveira, Food Biophys. 13, 186 (2018)

    Article  Google Scholar 

  11. C.E. Brunchi, M. Avadanei, M. Bercea, S. Morariu, J. Mol. Liq. 287, 1 (2019)

    Article  Google Scholar 

  12. S.K.H. Gulrez, S. Al-assaf, Y. Fang, G.O. Phillips, A.P. Gunning, Carbohydr. Polym. 90, 1235 (2012)

    Article  CAS  Google Scholar 

  13. J.E. Martín-Alfonso, A.A. Cuadri, M. Berta, M. Stading, Carbohydr. Polym. 181, 63 (2018)

    Article  PubMed  Google Scholar 

  14. M. Bercea, S. Morariu, J. Mol. Liq. 309, 1 (2020)

    Article  Google Scholar 

  15. S.A. Jones, D.M. Goodall, A.N. Cutler, I.T. Norton, Eur. Biophys. J. 15, 185 (1987)

    Article  CAS  Google Scholar 

  16. A.F. Dário, L.M.A. Hortêncio, M.R. Sierakowski, J.C.Q. Neto, D.F.S. Petri, Carbohydr. Polym. 84, 669 (2011)

    Article  Google Scholar 

  17. S. Howard, L. Kaminski, J. Downs, in SPE - Eur. Form. Damage Conf. Proceedings, EFDC (2015), pp. 1388–1413

  18. M. De Vivo, M. Masetti, G. Bottegoni, A. Cavalli, J. Med. Chem. 59, 4035 (2016)

    Article  PubMed  Google Scholar 

  19. A. Singh, S.K. Vanga, V. Orsat, V. Raghavan, Crit. Rev. Food Sci. Nutr. 58, 2779 (2018)

    Article  CAS  PubMed  Google Scholar 

  20. O.S. Nnyigide, T.O. Nnyigide, K. Hyun, Carbohydr. Polym. 251, 117061 (2021)

    Article  CAS  PubMed  Google Scholar 

  21. M.M. Rodrigo, A.C.F. Ribeiro, G. Moço, A.M.T.D.P.V. Cabral, A.J.M. Valente, M.A. Esteso, P.E. Abreu, J.R.C. Santos, J.M.C. Marques, J. Chem. Thermodyn. 155, 1 (2021)

    Google Scholar 

  22. D. Bakarić, D. Petrov, G.E. Schaumann, Y.K. Mouvenchery, S. Heiler, C. Oostenbrink, Chem. Phys. Lipids 210, 38 (2017)

    Article  PubMed  Google Scholar 

  23. E.E.S. Ong, S.O’Byrne, J.L. Liow, AIP Conf. Proc. 1954, (2018)

  24. R. Moorhouse, M.D. Walkinshaw, S. Arnott, 90 (1977)

  25. L. Pol-Fachin, V.H. Rusu, H. Verli, R.D. Lins, J. Chem. Theory Comput. 8, 4681 (2012)

    Article  CAS  PubMed  Google Scholar 

  26. M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess, E. Lindah, SoftwareX 1–2, 19 (2015)

    Article  Google Scholar 

  27. M.M. Reif, P.H. Hünenberger, J. Chem. Phys. 134, 0 (2011)

    Google Scholar 

  28. C. Oostenbrink, A. Villa, A.E. Mark, W.F.V.A.N. Gunsteren, J. Comput. Chem. 25, 1656–1676 (2004)

    Article  CAS  PubMed  Google Scholar 

  29. H.J.C. Berendsen, J.P.M. Postma, W.F. Van Gunsteren, J. Hermans, Intermol. Forces 14, 331 (1981)

    Article  CAS  Google Scholar 

  30. G. Bussi, D. Donadio, M. Parrinello, J. Chem. Phys. 126, 1 (2007)

    Article  Google Scholar 

  31. M. Parrinello, A. Rahman, J. Appl. Phys. 52, 7182 (1981)

    Article  CAS  Google Scholar 

  32. Y.M.H. Gonçalves, C. Senac, P.F.J. Fuchs, P.H. Hünenberger, B.A.C. Horta, J. Chem. Theory Comput. 15, 1806 (2019)

    Article  PubMed  Google Scholar 

  33. M.Q. Guo, X. Hu, C. Wang, L. Ai, in Solubility of Polysaccharides (2017), pp. 7–21

  34. L. de S. Soares, R.B. Perim, E.S. de Alvarenga, L. de M. Guimarães, A.V.N. de C. Teixeira, J.S. dos R. Coimbra, E.B. de Oliveira, Int. J. Biol. Macromol. 128, 140 (2019)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Brazilian agencies: CAPES, CNPq, FAPEMIG, and FINEP, for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

Érica Cardoso Valente: Conceptualization, Investigation, Writing – original draft. Marcelo Depólo Polêto: Conceptualization, Methodology, Investigation, Formal analysis, Data curation, Visualization, Supervision, Writing – original draft, Writing – review & editing. Thomás Valente de Oliveira: Conceptualization, Methodology, Investigation, Formal analysis, Data curation, Visualization, Supervision, Writing – original draft, Writing – original draft, Writing – review. Lucas de Souza Soares: Conceptualization, Methodology, Data curation, Supervision, Writing – original draft. Jane Sélia dos Reis Coimbra: Conceptualization, Resources, Visualization, Writing – review & editing. Ana Paula Guimarães: Conceptualization, Methodology, Visualization, Writing – review & editing. Eduardo Basílio de Oliveira: Conceptualization, Methodology, Resources, Funding acquisition, Project administration, Data curation, Visualization, Validation, Supervision, Writing – review & editing.

Corresponding author

Correspondence to Eduardo Basílio de Oliveira.

Ethics declarations

Conflict of Interest

The authors declare that there are no competing financial interests in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valente, É.C., Polêto, M.D., de Oliveira, T.V. et al. Effects of the Cations Li+, Na+, K+, Mg2+, or Ca2+ on Physicochemical Properties of Xanthan Gum in Aqueous Medium – A view from Computational Molecular Dynamics Calculations. Food Biophysics 18, 32–47 (2023). https://doi.org/10.1007/s11483-022-09773-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-022-09773-4

Keywords

Navigation