Abstract
Peptide fragment hybridization is an effective method to obtain novel hybrid antimicrobial peptides with higher antibacterial activities. The novel peptide, valine-cecropin A(1–8)-plantaricin ZJ5(1–18) (CA-P), was designed by coupling the amphiphilic N-terminal fragment of CA with the N-terminal core helix of P and adding a valine residue to the N-terminus of the hybrid fragment. CA-P showed higher antibacterial activities than the parental peptide P against all indicator strains in the experiment, with no hemolytic activity against sheep red blood cells. Observations by scanning electron microscopy and transmission electron microscopy confirmed that CA-P destroyed the surface structure of the bacteria and caused leakage of the cellular contents. As determined by fluorescence microscopy, the antibacterial mechanism of CA-P is microorganism killing. It was observed that CA-P and Litsea mollis Hemsl. essential oil showed a significant synergistic effect against Salmonella enterica serovar Newport.



Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
M. Ishidate Jr., S. Odashima, Mutat. Res. 48(3–4), 337–353 (1977)
N. Inui, M.M. Hasegawa, Y. Nishi, Y. Ohkawa, Food Chem. Toxicol. 22(7), 501–507 (1984)
A. Mukherjee, A.K. Giri, G. Talukder, A. Sharma, Toxicol. Lett. 42(1), 47–53 (1988)
J. Gomes, J. Barbosa, P. Teixeira, Curr. Chem. Biol. 12(1), 25–37 (2018)
D. Morisset, J.M. Berjeaud, D. Marion, C. Lacombe, J. Frere, Appl. Environ. Microbiol. 70(8), 4672–4680 (2004)
J. Cleveland, T.J. Montville, I.F. Nes, M.L. Chikindas, Int. J. Food Microbiol. 71(1), 1–20 (2001)
T.R. Klaenhammer, FEMS Microbiol. Rev. 12(1–3), 39–85 (1993)
K.A. Brogden, Nat. Rev. Microbiol. 3(3), 238–250 (2005)
D.J. Bowles, Annu. Rev. Biochem. 59(1), 873–907 (1990)
K.L. Brown, R.E. Hancock, Curr. Opin. Immunol. 18(1), 24–30 (2006)
J. Lubelski, R. Rink, R. Khusainov, G.N. Moll, O.P. Kuipers, Cell. Mol. Life Sci. 65(3), 455–476 (2008)
S. Mangalassary, I. Han, J. Rieck et al., J. Food Prot. 70(11), 2503–2511 (2007)
M.A. Lemos Miguel, A.C. Dias de Castro, and S. Ferreira Gomes Leite, Curr. Microbiol. 57(5), 429–436 (2008)
R. Aunpad, K. Na-Bangchang, Curr. Microbiol. 55(4), 308–313 (2007)
P.J. Perez Espitia, N. de Fátima, F. Soares, J.S. dos Reis Coimbra, N.J. de Andrade, R. Souza Cruz, E.A. Alves, Medeiros, Compr. Rev. Food Sci. F 11(2), 187–204 (2012)
M. Papagianni, Biotechnol. Adv. 21(6), 465–499 (2003)
D.F. Song, M.Y. Zhu, Q. Gu, PLoS One 9(8), e105549 (2014)
X.B. Wei, R.J. Wu, D.Y. Si, X.D. Liao, L.L. Zhang, R.J. Zhang, Int. J. Mol. Sci. 17(7), 983 (2016)
F.M. Marassi, S.J. Opella, P. Juvvadi, R.B. Merrifield, Biophys. J. 77(6), 3152–3155 (1999)
A. Giacometti, O. Cirioni, W. Kamysz et al., Peptides 24(9), 1315–1318 (2003)
M. Bacalum, M. Radu, Int. J. Pept. Res. Ther. 21(1), 47–55 (2015)
N. Pavon, M. Buelna-Chontal, L. Hernandez-Esquivel et al., Peptides 53, 202–209 (2014)
D. Wade, D. Andreu, S.A. Mitchell et al., Int. J. Pept. Protein Res. 40(5), 429–436 (1992)
D. Andreu, J. Ubach, A. Boman et al., FEBS Lett. 296(2), 190–194 (1992)
S.Y. Shin, M.K. Lee, K.L. Kim, K.S. Hahm, J. Pept. Res. 50(4), 279–285 (1997)
G. Hao, Y.H. Shi, J.H. Han, Q.H. Li, Y.L. Tang, G.W. Le, J. Pept. Sci. 14(3), 290–298 (2008)
J.P. Powers, R.E. Hancock, Peptides 24(11), 1681–1691 (2003)
L.G. Moraes, M.A. Fazio, R.F. Vieira et al., Biochim. Biophys. Acta 1768(1), 52–58 (2007)
S.J. Wood, Y.A. Park, N.P. Kanneganti et al., Int. J. Pept. Res. Ther. 20(4), 519–530 (2014)
B. Christensen, J. Fink, R.B. Merrifield, D. Mauzerall, Proc. Natl. Acad. Sci. U.S.A 85 (14), 5072–5076 (1988)
S.R. Dennison, J. Wallace, F. Harris, D.A. Phoenix, Protein Pept. Lett. 12(1), 31–39 (2005)
R.X. Zhao, G.L. Duan, T.Y. Yang, S.Y. Niu, Y. Wang, Trop. J. Pharm. Res. 14(6), 989–995 (2015)
B.K. Tiwari, V.P. Valdramidis, C.P. O’Donnell, K. Muthukumarappan, P. Bourke, P.J. Cullen, J. Agric. Food Chem. 57(14), 5987–6000 (2009)
J.C.P. Santos, R.C.S. Sousa, C.G. Otoni et al., Innov. Food Sci. Emerg. 48(4), 179–194 (2018)
X.M. Lu, X.B. Jin, J.Y. Zhu et al., Appl. Microbiol. Biotechnol. 87(6), 2169–2176 (2010)
J.M. Saugar, M.J. Rodriguez-Hernandez, B.G. de la Torre et al., Antimicrob. Agents Chemother. 50(4), 1251–1256 (2006)
S.Y. Shin, J.H. Kang, K.S. Hahm, J. Pept. Res. 53(1), 82–90 (1999)
R. Rathinakumar, W.F. Walkenhorst, W.C. Wimley, J. Am. Chem. Soc. 131(22), 7609–7617 (2009)
R. Gennaro, M. Zanetti, Biopolymers 55(1), 31–49 (2000)
D. Liu, J. Liu, W. Wang et al., Food Biophys. 11(4), 319–331 (2016)
R.E. Hancock, Lancet. Infect. Dis 1(3), 156–164 (2001)
M.R. Yeaman, N.Y. Yount, Pharmacol. Rev. 55(1), 27–55 (2003)
H.G. Boman, Annu. Rev. Immunol. 13(1), 61–92 (1995)
X. Li, Y. Li, H. Han, D.W. Miller, G. Wang, J. Am. Chem. Soc. 128(17), 5776–5785 (2006)
S.R. Durell, G. Raghunathan, H.R. Guy, Biophys. J. 63(6), 1623–1631 (1992)
G. Wang, B. Mishra, R.F. Epand, R.M. Epand, Biochim. Biophys. Acta 1838(9), 2160–2172 (2014)
B. Bechinger, M. Zasloff, S.J. Opella, Protein Sci. 2(12), 2077–2084 (1993)
H.G. Boman, B. Agerberth, A. Boman, Infect. Immun. 61(7), 2978–2984 (1993)
S.E. Blondelle, R.A. Houghten, Biochemistry 31(50), 12688–12694 (1992)
R. Bessalle, A. Gorea, I. Shalit et al., J. Med. Chem. 36(9), 1203–1209 (1993)
N. Ohmori, T. Niidome, T. Hatakeyama, H. Mihara, H. Aoyagi, J. Pept. Res. 51(2), 103–109 (1998)
D. Eisenberg, Annu. Rev. Biochem. 53(1), 595–623 (1984)
M. Dathe, T. Wieprecht, H. Nikolenko, L. Handel et al., FEBS Lett. 403(2), 208–212 (1997)
T. Wieprecht, M. Dathe, E. Krause, M. Beyermann, M. Bienert, FEBS Lett. 417(1), 135–140 (1997)
E. Perez-Paya, R.A. Houghten, S.E. Blondelle, J. Biol. Chem. 270(3), 1048–1056 (1995)
W.L. Zhu, H. Lan, Y. Park et al., Biochemistry 45(43), 13007–13017 (2006)
Y. Chen, M.T. Guarnieri, A.I. Vasil, M.L. Vasil, C.T. Mant, R.S. Hodges, Antimicrob. Agents Chemother. 51(4), 1398–1406 (2007)
Y. Chen, C.T. Mant, S.W. Farmer, R.E. Hancock, M.L. Vasil, R.S. Hodges, J. Biol. Chem. 280(13), 12316–12329 (2005)
Y. Chen, C.T. Mant, R.S. Hodges, J. Pept. Res. 59(1), 18–33 (2010)
K. Naghmouchi, J. Baah, D. Hober et al., Antimicrob. Agents Chemother. 57(6), 2719–2725 (2013)
M.C. Lin, C.F. Hui, J.Y. Chen, J.L. Wu, Peptides 44, 139–148 (2013)
S. Dosler, E. Mataraci, Peptides 49, 53–58 (2013)
S. Dosler, A.A. Gerceker, Chemotherapy 57(6), 511–516 (2011)
I.S. Hwang, J.S. Hwang, J.H. Hwang et al., Curr. Microbiol. 66(1), 56–60 (2013)
S.J. Kang, D.-H. Kim, T. Mishig-Ochir, B.-J. Lee, Arch. Pharmacal Res. 35(3), 409–413 (2012)
L. Jin, X. Bai, N. Luan et al., J. Med. Chem. 59(5), 1791–1799 (2016)
T. Madhuri, S.K. Shireen, Venugopal et al., Peptides 30(9), 0–1635 (2009)
X. Cai, X. Wang, Y. Chen, Y. Wang, D. Song, Q. Gu, J. Dairy Sci. 102(11), 9663–9673 (2019)
T.C. King, D.J. Krogstad, J. Infect. Dis. 147(4), 758–764 (1983)
T.C. King, D. Schlessinger, D.J. Krogstad, Rev. Infect. Dis. 3(3), 627–633 (1981)
Acknowledgements
This research was supported by the Natural Science Foundation of Zhejiang Province (No.LY18C06004) and Food Science and Engineering, the most important discipline of Zhejiang Province (No. JYTSP20142012).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Jiang, Y., Mei, C., Huang, X. et al. Antibacterial Activity and Mechanism of a Bacteriocin Derived from the Valine-Cecropin A(1–8)-Plantaricin ZJ5(1–18) Hybrid Peptide Against Escherichia coli O104. Food Biophysics 15, 442–451 (2020). https://doi.org/10.1007/s11483-020-09636-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11483-020-09636-w