Skip to main content

Advertisement

Log in

Antibacterial Activity and Mechanism of a Bacteriocin Derived from the Valine-Cecropin A(1–8)-Plantaricin ZJ5(1–18) Hybrid Peptide Against Escherichia coli O104

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Peptide fragment hybridization is an effective method to obtain novel hybrid antimicrobial peptides with higher antibacterial activities. The novel peptide, valine-cecropin A(1–8)-plantaricin ZJ5(1–18) (CA-P), was designed by coupling the amphiphilic N-terminal fragment of CA with the N-terminal core helix of P and adding a valine residue to the N-terminus of the hybrid fragment. CA-P showed higher antibacterial activities than the parental peptide P against all indicator strains in the experiment, with no hemolytic activity against sheep red blood cells. Observations by scanning electron microscopy and transmission electron microscopy confirmed that CA-P destroyed the surface structure of the bacteria and caused leakage of the cellular contents. As determined by fluorescence microscopy, the antibacterial mechanism of CA-P is microorganism killing. It was observed that CA-P and Litsea mollis Hemsl. essential oil showed a significant synergistic effect against Salmonella enterica serovar Newport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. M. Ishidate Jr., S. Odashima, Mutat. Res. 48(3–4), 337–353 (1977)

    CAS  PubMed  Google Scholar 

  2. N. Inui, M.M. Hasegawa, Y. Nishi, Y. Ohkawa, Food Chem. Toxicol. 22(7), 501–507 (1984)

    PubMed  Google Scholar 

  3. A. Mukherjee, A.K. Giri, G. Talukder, A. Sharma, Toxicol. Lett. 42(1), 47–53 (1988)

    CAS  PubMed  Google Scholar 

  4. J. Gomes, J. Barbosa, P. Teixeira, Curr. Chem. Biol. 12(1), 25–37 (2018)

    Google Scholar 

  5. D. Morisset, J.M. Berjeaud, D. Marion, C. Lacombe, J. Frere, Appl. Environ. Microbiol. 70(8), 4672–4680 (2004)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. J. Cleveland, T.J. Montville, I.F. Nes, M.L. Chikindas, Int. J. Food Microbiol. 71(1), 1–20 (2001)

    CAS  PubMed  Google Scholar 

  7. T.R. Klaenhammer, FEMS Microbiol. Rev. 12(1–3), 39–85 (1993)

    CAS  PubMed  Google Scholar 

  8. K.A. Brogden, Nat. Rev. Microbiol. 3(3), 238–250 (2005)

    CAS  PubMed  Google Scholar 

  9. D.J. Bowles, Annu. Rev. Biochem. 59(1), 873–907 (1990)

    CAS  PubMed  Google Scholar 

  10. K.L. Brown, R.E. Hancock, Curr. Opin. Immunol. 18(1), 24–30 (2006)

    CAS  PubMed  Google Scholar 

  11. J. Lubelski, R. Rink, R. Khusainov, G.N. Moll, O.P. Kuipers, Cell. Mol. Life Sci. 65(3), 455–476 (2008)

    CAS  PubMed  Google Scholar 

  12. S. Mangalassary, I. Han, J. Rieck et al., J. Food Prot. 70(11), 2503–2511 (2007)

    CAS  PubMed  Google Scholar 

  13. M.A. Lemos Miguel, A.C. Dias de Castro, and S. Ferreira Gomes Leite, Curr. Microbiol. 57(5), 429–436 (2008)

  14. R. Aunpad, K. Na-Bangchang, Curr. Microbiol. 55(4), 308–313 (2007)

    CAS  PubMed  Google Scholar 

  15. P.J. Perez Espitia, N. de Fátima, F. Soares, J.S. dos Reis Coimbra, N.J. de Andrade, R. Souza Cruz, E.A. Alves, Medeiros, Compr. Rev. Food Sci. F 11(2), 187–204 (2012)

    Google Scholar 

  16. M. Papagianni, Biotechnol. Adv. 21(6), 465–499 (2003)

    CAS  PubMed  Google Scholar 

  17. D.F. Song, M.Y. Zhu, Q. Gu, PLoS One 9(8), e105549 (2014)

    PubMed  PubMed Central  Google Scholar 

  18. X.B. Wei, R.J. Wu, D.Y. Si, X.D. Liao, L.L. Zhang, R.J. Zhang, Int. J. Mol. Sci. 17(7), 983 (2016)

    PubMed Central  Google Scholar 

  19. F.M. Marassi, S.J. Opella, P. Juvvadi, R.B. Merrifield, Biophys. J. 77(6), 3152–3155 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. A. Giacometti, O. Cirioni, W. Kamysz et al., Peptides 24(9), 1315–1318 (2003)

    CAS  PubMed  Google Scholar 

  21. M. Bacalum, M. Radu, Int. J. Pept. Res. Ther. 21(1), 47–55 (2015)

    CAS  Google Scholar 

  22. N. Pavon, M. Buelna-Chontal, L. Hernandez-Esquivel et al., Peptides 53, 202–209 (2014)

    CAS  PubMed  Google Scholar 

  23. D. Wade, D. Andreu, S.A. Mitchell et al., Int. J. Pept. Protein Res. 40(5), 429–436 (1992)

    CAS  PubMed  Google Scholar 

  24. D. Andreu, J. Ubach, A. Boman et al., FEBS Lett. 296(2), 190–194 (1992)

    CAS  PubMed  Google Scholar 

  25. S.Y. Shin, M.K. Lee, K.L. Kim, K.S. Hahm, J. Pept. Res. 50(4), 279–285 (1997)

    CAS  PubMed  Google Scholar 

  26. G. Hao, Y.H. Shi, J.H. Han, Q.H. Li, Y.L. Tang, G.W. Le, J. Pept. Sci. 14(3), 290–298 (2008)

    CAS  PubMed  Google Scholar 

  27. J.P. Powers, R.E. Hancock, Peptides 24(11), 1681–1691 (2003)

    CAS  PubMed  Google Scholar 

  28. L.G. Moraes, M.A. Fazio, R.F. Vieira et al., Biochim. Biophys. Acta 1768(1), 52–58 (2007)

    CAS  PubMed  Google Scholar 

  29. S.J. Wood, Y.A. Park, N.P. Kanneganti et al., Int. J. Pept. Res. Ther. 20(4), 519–530 (2014)

    CAS  Google Scholar 

  30. B. Christensen, J. Fink, R.B. Merrifield, D. Mauzerall, Proc. Natl. Acad. Sci. U.S.A 85 (14), 5072–5076 (1988)

  31. S.R. Dennison, J. Wallace, F. Harris, D.A. Phoenix, Protein Pept. Lett. 12(1), 31–39 (2005)

    CAS  PubMed  Google Scholar 

  32. R.X. Zhao, G.L. Duan, T.Y. Yang, S.Y. Niu, Y. Wang, Trop. J. Pharm. Res. 14(6), 989–995 (2015)

    CAS  Google Scholar 

  33. B.K. Tiwari, V.P. Valdramidis, C.P. O’Donnell, K. Muthukumarappan, P. Bourke, P.J. Cullen, J. Agric. Food Chem. 57(14), 5987–6000 (2009)

    CAS  PubMed  Google Scholar 

  34. J.C.P. Santos, R.C.S. Sousa, C.G. Otoni et al., Innov. Food Sci. Emerg. 48(4), 179–194 (2018)

    CAS  Google Scholar 

  35. X.M. Lu, X.B. Jin, J.Y. Zhu et al., Appl. Microbiol. Biotechnol. 87(6), 2169–2176 (2010)

    CAS  PubMed  Google Scholar 

  36. J.M. Saugar, M.J. Rodriguez-Hernandez, B.G. de la Torre et al., Antimicrob. Agents Chemother. 50(4), 1251–1256 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  37. S.Y. Shin, J.H. Kang, K.S. Hahm, J. Pept. Res. 53(1), 82–90 (1999)

    CAS  PubMed  Google Scholar 

  38. R. Rathinakumar, W.F. Walkenhorst, W.C. Wimley, J. Am. Chem. Soc. 131(22), 7609–7617 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. R. Gennaro, M. Zanetti, Biopolymers 55(1), 31–49 (2000)

    CAS  PubMed  Google Scholar 

  40. D. Liu, J. Liu, W. Wang et al., Food Biophys. 11(4), 319–331 (2016)

    Google Scholar 

  41. R.E. Hancock, Lancet. Infect. Dis 1(3), 156–164 (2001)

    CAS  PubMed  Google Scholar 

  42. M.R. Yeaman, N.Y. Yount, Pharmacol. Rev. 55(1), 27–55 (2003)

    CAS  PubMed  Google Scholar 

  43. H.G. Boman, Annu. Rev. Immunol. 13(1), 61–92 (1995)

    CAS  PubMed  Google Scholar 

  44. X. Li, Y. Li, H. Han, D.W. Miller, G. Wang, J. Am. Chem. Soc. 128(17), 5776–5785 (2006)

    CAS  PubMed  Google Scholar 

  45. S.R. Durell, G. Raghunathan, H.R. Guy, Biophys. J. 63(6), 1623–1631 (1992)

    CAS  PubMed  PubMed Central  Google Scholar 

  46. G. Wang, B. Mishra, R.F. Epand, R.M. Epand, Biochim. Biophys. Acta 1838(9), 2160–2172 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  47. B. Bechinger, M. Zasloff, S.J. Opella, Protein Sci. 2(12), 2077–2084 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. H.G. Boman, B. Agerberth, A. Boman, Infect. Immun. 61(7), 2978–2984 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  49. S.E. Blondelle, R.A. Houghten, Biochemistry 31(50), 12688–12694 (1992)

    CAS  PubMed  Google Scholar 

  50. R. Bessalle, A. Gorea, I. Shalit et al., J. Med. Chem. 36(9), 1203–1209 (1993)

    CAS  PubMed  Google Scholar 

  51. N. Ohmori, T. Niidome, T. Hatakeyama, H. Mihara, H. Aoyagi, J. Pept. Res. 51(2), 103–109 (1998)

    CAS  PubMed  Google Scholar 

  52. D. Eisenberg, Annu. Rev. Biochem. 53(1), 595–623 (1984)

    CAS  PubMed  Google Scholar 

  53. M. Dathe, T. Wieprecht, H. Nikolenko, L. Handel et al., FEBS Lett. 403(2), 208–212 (1997)

    CAS  PubMed  Google Scholar 

  54. T. Wieprecht, M. Dathe, E. Krause, M. Beyermann, M. Bienert, FEBS Lett. 417(1), 135–140 (1997)

    CAS  PubMed  Google Scholar 

  55. E. Perez-Paya, R.A. Houghten, S.E. Blondelle, J. Biol. Chem. 270(3), 1048–1056 (1995)

    CAS  PubMed  Google Scholar 

  56. W.L. Zhu, H. Lan, Y. Park et al., Biochemistry 45(43), 13007–13017 (2006)

    CAS  PubMed  Google Scholar 

  57. Y. Chen, M.T. Guarnieri, A.I. Vasil, M.L. Vasil, C.T. Mant, R.S. Hodges, Antimicrob. Agents Chemother. 51(4), 1398–1406 (2007)

    CAS  PubMed  Google Scholar 

  58. Y. Chen, C.T. Mant, S.W. Farmer, R.E. Hancock, M.L. Vasil, R.S. Hodges, J. Biol. Chem. 280(13), 12316–12329 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Y. Chen, C.T. Mant, R.S. Hodges, J. Pept. Res. 59(1), 18–33 (2010)

    Google Scholar 

  60. K. Naghmouchi, J. Baah, D. Hober et al., Antimicrob. Agents Chemother. 57(6), 2719–2725 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  61. M.C. Lin, C.F. Hui, J.Y. Chen, J.L. Wu, Peptides 44, 139–148 (2013)

    CAS  PubMed  Google Scholar 

  62. S. Dosler, E. Mataraci, Peptides 49, 53–58 (2013)

    CAS  PubMed  Google Scholar 

  63. S. Dosler, A.A. Gerceker, Chemotherapy 57(6), 511–516 (2011)

    CAS  PubMed  Google Scholar 

  64. I.S. Hwang, J.S. Hwang, J.H. Hwang et al., Curr. Microbiol. 66(1), 56–60 (2013)

    CAS  PubMed  Google Scholar 

  65. S.J. Kang, D.-H. Kim, T. Mishig-Ochir, B.-J. Lee, Arch. Pharmacal Res. 35(3), 409–413 (2012)

    CAS  Google Scholar 

  66. L. Jin, X. Bai, N. Luan et al., J. Med. Chem. 59(5), 1791–1799 (2016)

    CAS  PubMed  Google Scholar 

  67. T. Madhuri, S.K. Shireen, Venugopal et al., Peptides 30(9), 0–1635 (2009)

    CAS  Google Scholar 

  68. X. Cai, X. Wang, Y. Chen, Y. Wang, D. Song, Q. Gu, J. Dairy Sci. 102(11), 9663–9673 (2019)

    CAS  PubMed  Google Scholar 

  69. T.C. King, D.J. Krogstad, J. Infect. Dis. 147(4), 758–764 (1983)

    CAS  PubMed  Google Scholar 

  70. T.C. King, D. Schlessinger, D.J. Krogstad, Rev. Infect. Dis. 3(3), 627–633 (1981)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Science Foundation of Zhejiang Province (No.LY18C06004) and Food Science and Engineering, the most important discipline of Zhejiang Province (No. JYTSP20142012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dafeng Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Mei, C., Huang, X. et al. Antibacterial Activity and Mechanism of a Bacteriocin Derived from the Valine-Cecropin A(1–8)-Plantaricin ZJ5(1–18) Hybrid Peptide Against Escherichia coli O104. Food Biophysics 15, 442–451 (2020). https://doi.org/10.1007/s11483-020-09636-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-020-09636-w

Keywords