Skip to main content
Log in

The Effects of Lipid Oxidation Product Acrolein on the Structure and Gel Properties of Rabbit Meat Myofibrillar Proteins

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

We investigated the effect of acrolein, a byproduct of lipid oxidation, on the structure and gel properties of myofibrillar proteins (MPs) isolated from rabbit meat. As the acrolein concentration increased, the protein carbonyl compounds significantly accumulated (p < 0.05), and the total sulfhydryl content was significantly lost (p < 0.05). The results of circular dichroism spectra, surface hydrophobicity, UV absorption spectra and intrinsic fluorescence spectra evidenced that acrolein caused the disruption of α-helix structure, the exposure of hydrophobic sites and the unfolding of MPs. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis suggested that medium (0–1 mM) and high (5–10 mM) concentrations of acrolein could induce protein cross-linkage and protein aggregation, respectively. These structural changes could affect gelling properties of MPs involving gel strength and water holding capacity (WHC). The results of Raman spectroscopy indicated that moderate oxidative modification caused protein unfolding as well as the decline of α-helix structure and the increase of β-sheets structure in gels, thereby influencing the gel properties. Moderate oxidative modification (0–1 mM) improved gel strength and WHC, while excessive oxidative modification (5–10 mM) resulted in decreased gel properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F. Zhou, M. Zhao, H. Zhao, W. Sun, C. Cui, Effects of oxidative modification on gel properties of isolated porcine myofibrillar protein by peroxyl radicals. Meat Sci. 96, 1432–1439 (2014)

    Article  CAS  Google Scholar 

  2. X. Chen, R.K. Tume, Y. Xiong, X. Xu, G. Zhou, C. Chen, T. Nishiumi, Structural modification of myofibrillar proteins by high-pressure processing for functionally improved, value-added, and healthy muscle gelled foods. Crit. Rev. Food Sci. Nutr., 1–23 (2017)

  3. W. Zhang, S. Xiao, D.U. Ahn, Protein oxidation: basic principles and implications for meat quality. Crit. Rev. Food Sci. Nutr. 53, 1191–1201 (2013)

    Article  CAS  Google Scholar 

  4. M. Estévez, Protein carbonyls in meat systems: a review. Meat Sci. 89, 259–279 (2011)

    Article  Google Scholar 

  5. S. Jongberg, M. N. Lund, L. H. Skibsted, Protein oxidation in meat and meat products. Challenges for antioxidative protection. In Global Food Security and Wellness, ed. by G. Barbosa-Cánovas, et al. (Springer, New York, 2017), pp. 315–337

    Chapter  Google Scholar 

  6. L. Wang, M. Zhang, Z. Fang, B. Bhandari, Gelation properties of myofibrillar protein under malondialdehyde-induced oxidative stress. J. Sci. Food Agric. 97, 50–57 (2017)

    Article  CAS  Google Scholar 

  7. M. Hęś, Protein-lipid interactions in different meat systems in the presence of natural antioxidants–a review. Polish J. Food Nutr. Sci. 67, 5–18 (2017)

    Article  Google Scholar 

  8. V.M. Osório, Z. de Lourdes Cardeal, Determination of acrolein in french fries by solid-phase microextraction gas chromatography and mass spectrometry. J. Chromatogr. A 1218, 3332–3336 (2011)

    Article  Google Scholar 

  9. B.C. Sousa, A.R. Pitt, C.M. Spickett, Chemistry and analysis of HNE and other prominent carbonyl-containing lipid oxidation compounds. Free Radic. Biol. Med. 111, 294–308 (2017)

    Article  CAS  Google Scholar 

  10. S. Pizzimenti, E.S. Ciamporcero, M. Daga, P. Pettazzoni, A. Arcaro, G. Cetrangolo, Interaction of aldehydes derived from lipid peroxidation and membrane proteins. Front. Physiol. 4, 242–249 (2013)

    Article  Google Scholar 

  11. V.R. Thompson, A.P. DeCaprio, Covalent adduction of nitrogen mustards to model protein nucleophiles. Chem. Res. Toxicol. 26, 1263–1271 (2013)

    Article  CAS  Google Scholar 

  12. P. Hernández, A. Dalle Zotte, Influence of diet on rabbit meat quality. In Nutrition of the Rabbit, ed. by P. Hernández, A. Dalle Zotte (CABI, 2010), pp.163–178

  13. I. Chelh, P. Gatellier, V. Santé-Lhoutellier, A simplified procedure for myofibril hydrophobicity determination. Meat Sci. 74, 681–683 (2006)

    Article  CAS  Google Scholar 

  14. C. Qiu, W. Xia, Q. Jiang, Pressure-induced changes of silver carp (Hypophthalmichthys molitrix) myofibrillar protein structure. Eur. Food Res. Technol. 238(5), 753–761 (2014)

    Article  CAS  Google Scholar 

  15. W. Jiang, Y. He, S. Xiong, Y. Liu, T. Yin, Y. Hu, J. You, Effect of mild ozone oxidation on structural changes of silver carp (Hypophthalmichthys molitrix) myosin. Food Bioprocess Technol. 10, 370–378 (2017)

    Article  CAS  Google Scholar 

  16. L. Lv, H. Lin, Z. Li, J. Wang, I. Ahmed, H. Chen, Changes of structure and IgE binding capacity of shrimp (Metapenaeus ensis) tropomyosin followed by acrolein treatment. Food Funct. 8, 1028–1036 (2017)

    Article  CAS  Google Scholar 

  17. X. Zhuang, M. Han, Y. Bai, Y. Liu, L. Xing, X.L. Xu, G.H. Zhou, Insight into the mechanism of myofibrillar protein gel improved by insoluble dietary fiber. Food Hydrocoll. 74, 219–226 (2018)

    Article  CAS  Google Scholar 

  18. W. Wu, X. Wu, Y. Hua, Structural modification of soy protein by the lipid peroxidation product acrolein. LWT – Food Sci. Technol. 4, 133–140 (2010)

    Article  Google Scholar 

  19. G. Aldini, M. Orioli, M. Carini, Protein modification by acrolein: relevance to pathological conditions and inhibition by aldehyde sequestering agents. Mol. Nutr. Food Res. 55, 1301–1319 (2011)

    Article  CAS  Google Scholar 

  20. J. Cai, A. Bhatnagar, W.M. Pierce Jr., Protein modification by acrolein: formation and stability of cysteine adducts. Chem. Res. Toxicol. 22, 708–716 (2009)

    Article  CAS  Google Scholar 

  21. T. Maeshima, K. Honda, M. Chikazawa, T. Shibata, Y. Kawai, M. Akagawa, et al., Quantitative analysis of acrolein-specific adducts generated during lipid peroxidation–modification of proteins in vitro: Identification of N τ-(3-propanal) histidine as the major adduct. Chem. Res. Toxicol. 25, 1384–1392 (2012)

    Article  CAS  Google Scholar 

  22. K. Uchida, M. Kanematsu, K. Sakai, T. Matsuda, N. Hattori, Y. Mizuno, et al., Protein-bound acrolein: potential markers for oxidative stress. Proc. Natl. Acad. Sci. 95, 4882–4887 (1998)

    Article  CAS  Google Scholar 

  23. A. Furuhata, T. Ishii, S. Kumazawa, T. Yamada, T. Nakayama, K. Uchida, Nϵ-(3-Methylpyridinium) lysine, a major antigenic adduct generated in acrolein-modified protein. J. Biol. Chem. 278, 48658–48665 (2003)

    Article  CAS  Google Scholar 

  24. L.M. Kaminskas, S.M. Pyke, P.C. Burcham, Michael addition of acrolein to lysinyl and N-terminal residues of a model peptide: targets for cytoprotective hydrazino drugs. Rapid Commun. Mass Spectrom. 21, 1155–1164 (2007)

    Article  CAS  Google Scholar 

  25. M.J. Randall, P.C. Spiess, M. Hristova, R.J. Hondal, A. van der Vliet, Acrolein-induced activation of mitogen-activated protein kinase signaling is mediated by alkylation of thioredoxin reductase and thioredoxin 1. Redox Biol. 1, 265–275 (2013)

    Article  CAS  Google Scholar 

  26. A. Furuhata, M. Nakamura, T. Osawa, K. Uchida, Thiolation of protein-bound carcinogenic aldehyde an electrophilic acrolein-lysine adduct that covalently binds to thiols. J. Biol. Chem. 277, 27919–27926 (2002)

    Article  CAS  Google Scholar 

  27. Z. Zhang, Y. Yang, P. Zhou, X. Zhang, J. Wang, Effects of high pressure modification on conformation and gelation properties of myofibrillar protein. Food Chem. 217, 678–686 (2017)

    Article  CAS  Google Scholar 

  28. N. Jia, L. Wang, J. Shao, D. Liu, B. Kong, Changes in the structural and gel properties of pork myofibrillar protein induced by catechin modification. Meat Sci. 127, 45–50 (2017)

    Article  CAS  Google Scholar 

  29. Z.J. Bao, J.P. Wu, Y. Cheng, Y.J. Chi, Effects of lipid peroxide on the structure and gel properties of ovalbumin. Process Biochem. 57, 124–130 (2017)

    Article  CAS  Google Scholar 

  30. L. Lv, H. Lin, Z. Li, F. Yuan, Q. Gao, J. Ma, Effect of 4-hydroxy-2-nonenal treatment on the IgE binding capacity and structure of shrimp (Metapenaeus ensis) tropomyosin. Food Chem. 212, 313–322 (2016)

    Article  CAS  Google Scholar 

  31. Z. Wang, Z. He, H. Li, Mass transfer dynamics during brining of rabbit meat. World Rabbit Sci. 25, 377–385 (2017)

    Article  Google Scholar 

  32. L. Wang, M. Zhang, Z. Fang, B. Bhandari, Z. Gao, Influence of linoleic acid-induced oxidative modification on gel properties of myofibrillar protein from silver carp (Hypophthalmichthys molitrix) muscle. Food Biophys. 11, 266–274 (2016)

    Article  Google Scholar 

  33. K.Q. Wang, S.Z. Luo, X.Y. Zhong, J. Cai, S.T. Jiang, Z. Zheng, Changes in chemical interactions and protein conformation during heat-induced wheat gluten gel formation. Food Chem. 214, 393–399 (2017)

    Article  CAS  Google Scholar 

  34. M. Zhang, F. Li, X. Diao, B. Kong, X. Xia, Moisture migration, microstructure damage and protein structure changes in porcine longissimus muscle as influenced by multiple freeze-thaw cycles. Meat Sci. 133, 10–18 (2017)

    Article  CAS  Google Scholar 

  35. A. Segat, N.N. Misra, A. Fabbro, F. Buchini, G. Lippe, P.J. Cullen, N. Innocente, Effects of ozone processing on chemical, structural and functional properties of whey protein isolate. Food Res. Int. 66, 365–372 (2014)

    Article  CAS  Google Scholar 

  36. S.J. Li, A.J. King, Structural changes of rabbit myosin subfragment 1 altered by malonaldehyde, a byproduct of lipid oxidation. J. Agric. Food Chem. 47, 3124–3129 (1999)

    Article  CAS  Google Scholar 

  37. T. Ishii, T. Yamada, T. Mori, S. Kumazawa, K. Uchida, T. Nakayama, Characterization of acrolein-induced protein cross-links. Free Radic. Res. 41, 1253–1260 (2007)

    Article  CAS  Google Scholar 

  38. Y. Sun, H. Luo, J. Cao, D. Pan, Structural characteristics of Sheldrake meat and secondary structure of myofibrillar protein: effects of oxidation. Int. J. Food Prop. 20, 1553–1566 (2017)

    CAS  Google Scholar 

  39. Y.L. Xiong, S.P. Blanchard, T. Ooizumi, Y. Ma, Hydroxyl radical and Ferryl-generating systems promote gel network formation of myofibrillar protein. J. Food Sci. 75, 215–221 (2010)

    Article  Google Scholar 

  40. F. Zhou, M. Zhao, G. Su, C. Cui, W. Sun, Gelation of salted myofibrillar protein under malondialdehyde-induced oxidative stress. Food Hydrocoll. 40, 153–162 (2014)

    Article  CAS  Google Scholar 

  41. M. Wang, X. Chen, Y. Zou, H. Chen, S. Xue, C. Qian, P. Wang, X. Xu, G. Zhou, High-pressure processing-induced conformational changes during heating affect water holding capacity of myosin gel. Int. J. Food Sci Technol. 52, 724–732 (2017)

    Article  CAS  Google Scholar 

  42. L. Wang, M. Zhang, B. Bhandari, Z. Gao, Effects of malondialdehyde-induced protein modification on water functionality and physicochemical state of fish myofibrillar protein gel. Food Res. Int. 86, 131–139 (2016)

    Article  CAS  Google Scholar 

  43. H. Yang, W. Zhang, T. Li, H. Zheng, M.A. Khan, X. Xu, et al., Effect of protein structure on water and fat distribution during meat gelling. Food Chem. 204, 239–245 (2016)

    Article  CAS  Google Scholar 

  44. C.B. Tang, W.G. Zhang, Y.F. Zou, L.J. Xing, H.B. Zheng, X.L. Xu, G.H. Zhou, Influence of RosA-protein adducts formation on myofibrillar protein gelation properties under oxidative stress. Food Hydrocoll. 67, 197–205 (2017)

    Article  CAS  Google Scholar 

  45. S. Xue, X. Yu, H. Yang, X. Xu, H. Ma, G. Zhou, Contribution of high-pressure-induced protein modifications to the microenvironment and functional properties of rabbit meat sausages. J. Food Sci. 82(6), 1357–1368 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from General Program of National Natural Science Foundation of China (31671787), the National Rabbit Industry Technology System Programme (Grant No. CARS-43-E-1) and Chongqing Herbivorous livestock Industry Technology System (Y201706).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Li.

Ethics declarations

Conflict of Interest

The authors declare that we have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., He, Z., Gan, X. et al. The Effects of Lipid Oxidation Product Acrolein on the Structure and Gel Properties of Rabbit Meat Myofibrillar Proteins. Food Biophysics 13, 374–386 (2018). https://doi.org/10.1007/s11483-018-9543-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-018-9543-6

Keywords

Navigation