Skip to main content
Log in

Influence of Surfactant Type and Concentration on Electrospinning of Chitosan–Poly(Ethylene Oxide) Blend Nanofibers

  • Original Article
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Electrospun blend nanofibers were fabricated from chitosan (1,000 kDa, 80% DDA) and poly(ethylene oxide) (PEO; 900 kDa) at a ratio of 3:1 dispersed in 50% and 90% acetic acid. The influence of surfactants on the production of electrospun nanofibers was investigated by adding nonionic polyoxyethylene glycol dodecyl ether (Brij 35), anionic sodium dodecyl sulfate, or cationic dodecyl trimethyl ammonium bromide below, at, and above their specific critical micellar concentration to the polymer blend solution. Viscosity, conductivity, and surface tension of polymer solutions, as well as morphology and composition, of nanofibers containing surfactants were determined. Pure chitosan did not form fibers and was instead deposited as beads. Addition of PEO and an increasing concentration of surfactants induced spinnability and yielded larger fibers with diameters ranging from 10 to 240 nm. Surfactants affected morphology yielding needle-like, smooth, or beaded fibers. Compositional analysis revealed that nanofibers consisted of both polymers and surfactants with concentration of the constituents in nanofibers differing from that in polymer solutions. Results suggest that surfactants may modulate polymer–polymer interactions thus influencing the morphology and composition of deposited nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C. Burger, B.S. Hsiao, B. Chu, Annu. Rev. Mater. Res. 36, 333–368 (2006). doi:10.1146/annurev.matsci.36.011205.123537

    Article  CAS  Google Scholar 

  2. Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, Compos. Sci. Technol. 63(15), 2223–2253 (2003). doi:10.1016/S0266-3538(03)00178-7

    Article  CAS  Google Scholar 

  3. M. Kumar, R.A.A. Muzzarelli, C. Muzzarelli, H. Sashiwa, A.J. Domb, Chem. Rev. 104(12), 6017–6084 (2004). doi:10.1021/cr030441b

    Article  Google Scholar 

  4. R.A.A. Muzzarelli, Chitin (Pergamon, Oxford, 1977)

    Google Scholar 

  5. H.K. No, S.P. Meyers, W. Prinyawiwatkul, Z. Xu, J. Food Sci. 72(5), R87–R100 (2007). doi:10.1111/j.1750-3841.2007.00383.x

    Article  CAS  Google Scholar 

  6. L. Li, Y.L. Hsieh, Carbohydr. Res. 341(3), 374–381 (2006). doi:10.1016/j.carres.2005.11.028

    Article  CAS  Google Scholar 

  7. Y.T. Jia, J. Gong, X.H. Gu, H.Y. Kim, J. Dong, X.Y. Shen, Carbohydr. Polym. 67(3), 403–409 (2007). doi:10.1016/j.carbpol.2006.06.010

    Article  CAS  Google Scholar 

  8. B. Duan, C.H. Dong, X.Y. Yuan, K.D. Yao, J. Biomater. Sci. Polym. Ed. 15(6), 797–811 (2004). doi:10.1163/156856204774196171

    Article  CAS  Google Scholar 

  9. A. Subramanian, H.-Y. Lin, D. Vu, G. Larsen, Biomed. Sci. Instrum. 40, 117–122 (2004)

    CAS  Google Scholar 

  10. K.H. Jung, M.W. Huh, W. Meng et al., J. Appl. Polym. Sci. 105(5), 2816–2823 (2007). doi:10.1002/app.25594

    Article  CAS  Google Scholar 

  11. K. Ohkawa, K.I. Minato, G. Kumagai, S. Hayashi, H. Yamamoto, Biomacromolecules 7(11), 3291–3294 (2006). doi:10.1021/bm0604395

    Article  CAS  Google Scholar 

  12. B.M. Min, S.W. Lee, J.N. Lim et al., Polymer (Guildf.) 45(21), 7137–7142 (2004). doi:10.1016/j.polymer.2004.08.048

    Article  CAS  Google Scholar 

  13. X.Y. Geng, O.H. Kwon, J.H. Jang, Biomaterials 26(27), 5427–5432 (2005). doi:10.1016/j.biomaterials.2005.01.066

    Article  CAS  Google Scholar 

  14. L. Yao, T.W. Haas, A. Guiseppi-Elie, G.L. Bowlin, D.G. Simpson, G.E. Wnek, Chem. Mater. 15(9), 1860–1864 (2003). doi:10.1021/cm0210795

    Article  CAS  Google Scholar 

  15. T. Lin, H.X. Wang, H.M. Wang, X.G. Wang, Nanotechnology 15(9), 1375–1381 (2004). doi:10.1088/0957-4484/15/9/044

    Article  CAS  Google Scholar 

  16. A. Helenius, D.R. McCaslin, E. Fries, C. Tanford, Methods Enzymol. 56, 734–749 (1979). doi:10.1016/0076-6879(79)56066-2

    Article  CAS  Google Scholar 

  17. S. Wongsasulak, K.M. Kit, D.J. McClements, T. Yoovidhya, J. Weiss, Polymer (Guildf.) 48(2), 448–457 (2007). doi:10.1016/j.polymer.2006.11.025

    Article  CAS  Google Scholar 

  18. H. Fong, I. Chun, D.H. Reneker, Polymer (Guildf.) 40(16), 4585–4592 (1999). doi:10.1016/S0032-3861(99)00068-3

    Article  CAS  Google Scholar 

  19. Y.M. Shin, M.M. Hohman, M.P. Brenner, G.C. Rutledge, Polymer (Guildf.) 42(25), 9955–9967 (2001). doi:10.1016/S0032-3861(01)00540-7

    Article  CAS  Google Scholar 

  20. J.M. Deitzel, J. Kleinmeyer, D. Harris, N.C.B. Tan, Polymer (Guildf.) 42(1), 261–272 (2001). doi:10.1016/S0032-3861(00)00250-0

    Article  CAS  Google Scholar 

  21. N. Bhattarai, M.Q. Zhang, Nanotechnology 18(45), 455601.1–455601.10 (2007). doi:10.1088/0957-4484/18/45/455601

    Article  Google Scholar 

  22. H.L. Jiang, D.F. Fang, B.S. Hsiao, B. Chu, W.L. Chen, Biomacromolecules 5(2), 326–333 (2004). doi:10.1021/bm034345w

    Article  CAS  Google Scholar 

  23. M. Spasova, N. Manolova, D. Paneva, L. Rashkov, Preparation of chitosan-containing nanofibres by electrospinning of chitosan/poly (ethylene oxide) blend solutions. e-Polymers, Art. No. 056. (2004)

  24. J.B. Xie, Y.L. Hsieh, J. Mater. Sci. 38(10), 2125–2133 (2003). doi:10.1023/A:1023763727747

    Article  CAS  Google Scholar 

  25. L.F. Zhang, Y.L. Hsieh, Carbohydr. Polym. 71(2), 196–207 (2008). doi:10.1016/j.carbpol.2007.05.031

    Article  CAS  Google Scholar 

  26. Y.S. Zhou, D.Z. Yang, J. Nie, J. Appl. Polym. Sci. 102(6), 5692–5697 (2006). doi:10.1002/app.25068

    Article  CAS  Google Scholar 

  27. P. Gupta, C. Elkins, T.E. Long, G.L. Wilkes, Polymer (Guildf.) 46(13), 4799–4810 (2005)

    CAS  Google Scholar 

  28. Y. Wan, H. Wu, A.X. Yu, D.J. Wen, Biomacromolecules 7(4), 1362–1372 (2006). doi:10.1021/bm0600825

    Article  CAS  Google Scholar 

  29. C.L. De Vasconcelos, P.M. Bezerril, D.E.S. dos Santos, T.N.C. Dantas, M.R. Pereira, J.L.C. Fonseca, Biomacromolecules 7(4), 1245–1252 (2006). doi:10.1021/bm050963w

    Article  Google Scholar 

  30. Y. Hu, Y.M. Du, J.H. Yang, Y.F. Tang, J. Li, X.Y. Wang, Polymer (Guildf.) 48(11), 3098–3106 (2007). doi:10.1016/j.polymer.2007.03.063

    Article  CAS  Google Scholar 

  31. S. Zivanovic, J.J. Li, P.M. Davidson, K. Kit, Biomacromolecules 8, 1505–1510 (2007). doi:10.1021/bm061140p

    Article  CAS  Google Scholar 

  32. C. Sawatari, T. Kondo, Macromolecules 32(6), 1949–1955 (1999). doi:10.1021/ma980900o

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Environmental Protection Agency Star Grant Program (grant number GR832372) and the Massachusetts Experiment Station supported by the Cooperative State Research, Extension, Education Service, United States Department of Agriculture, Massachusetts Agricultural Experiment Station (project nos. 831 and 911).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Weiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kriegel, C., Kit, K.M., McClements, D.J. et al. Influence of Surfactant Type and Concentration on Electrospinning of Chitosan–Poly(Ethylene Oxide) Blend Nanofibers. Food Biophysics 4, 213–228 (2009). https://doi.org/10.1007/s11483-009-9119-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-009-9119-6

Keywords

Navigation