Skip to main content
Log in

Modeling the Rheological Properties of Fats: A Perspective and Recent Advances

  • Review Article
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The elastic modulus of colloidal fat crystal networks scales with the volume fraction of solids in a power–law fashion. To explain and predict how the elastic properties of these networks change with their volume fraction of solids, several physical models have been proposed. In this review, the chronology of the development of structural–mechanical models to explain the elasticity of fats is reviewed, leading to the development of the fractal model. In the fractal model, the fractal-like behavior of fat crystal networks, which can be considered fractal gels of polycrystals in oil, or colloidal crystals, is used to explain the power–law scaling behavior of the shear elastic modulus to the volume fraction of solids. Lately, however, many experimental results and simulation studies suggest that the stress distribution within networks can be dramatically heterogeneous, which means that a small part of the network carries most of the stress. This concept was introduced into a modified fractal model by deriving an expression for the effective volume fraction of stress-carrying solids. The modified fractal model fits the experimental data well and successfully explains the sometimes observed non-linear log–log behavior between the shear elastic modulus and the volume fraction of solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. J.M. deMan, A.M. Beers, J. Texture Stud. 18, 303 (1987)

    Article  Google Scholar 

  2. M. van den Tempel, J. Colloid Interface Sci. 71, 18 (1979)

    Article  Google Scholar 

  3. I. Heertje, Food Microstruct. 12, 77 (1993)

    CAS  Google Scholar 

  4. R. Vreeker, L.L. Hoekstra, D.C. den Boer, W.G.M. Agterof, Colloids Surf. 65, 185 (1992)

    Article  CAS  Google Scholar 

  5. A.G. Marangoni, D. Rousseau, J. Am. Oil Chem. Soc. 73, 991 (1996)

    Article  CAS  Google Scholar 

  6. S.S. Narine, A.G. Marangoni, Phys. Rev. E 60, 6991 (1999)

    Article  CAS  Google Scholar 

  7. S.S. Narine, A.G. Marangoni, Lebensm.-Wiss. Technol. 34, 33 (2001)

    Article  CAS  Google Scholar 

  8. D. Johansaon, J. Am. Oil Chem. Soc. 72, 1235 (1995)

    Article  Google Scholar 

  9. A.G. Marangoni, D. Rousseau, J. Am. Oil Chem. Soc. 75, 1633 (1998)

    Article  CAS  Google Scholar 

  10. D. Rousseau, A.G. Marangoni, J. Agric. Food Chem. 46, 2375 (1998)

    Article  CAS  Google Scholar 

  11. D. Rousseau, A.G. Marangoni, Food Res. Int. 31, 381 (1999)

    Article  Google Scholar 

  12. S.S. Narine, A.G. Marangoni, Food Res. Int. 32, 227 (1999)

    Article  CAS  Google Scholar 

  13. R. Campos, S.S. Narine, A.G. Marangoni, Food Res. Int. 35, 971 (2002)

    Article  CAS  Google Scholar 

  14. M.L. Herrera, R.W. Hartel, J. Am. Oil Chem. Soc. 77, 1189 (2000)

    Article  CAS  Google Scholar 

  15. C.G. Herrera, Grasas Aceites 55(2), 180 (2004)

    Google Scholar 

  16. B. Liang, J.L. Sebright, Y. Shi, R.W. Hartel, J.H. Perepezko, J. Am. Oil Chem. Soc. 83, 389 (2006)

    Article  CAS  Google Scholar 

  17. A.J. Wright, M.G. Scanlon, R.W. Hartel, A.G. Marangoni, J. Food Sci. 66, 1056 (2001)

    Article  CAS  Google Scholar 

  18. A.G. Marangoni, Trends Food Sci. Technol. 13, 37 (2002)

    Article  CAS  Google Scholar 

  19. M. van den Tempel, J. Colloid Sci. 16, 284 (1961)

    Article  Google Scholar 

  20. C.J. Nederveen, J. Colloid Sci. 18, 276 (1963)

    Article  CAS  Google Scholar 

  21. D. Tang, A.G. Marangoni, J. Am. Oil Chem. Soc. 83, 377 (2006)

    Article  CAS  Google Scholar 

  22. D. Tang, A.G. Marangoni, Adv. Colloid. Interface Sci. 128–130, 257 (2006)

    Article  CAS  Google Scholar 

  23. D. Tang, A.G. Marangoni, Trends Food Sci. Technol. 18, 474 (2007)

    Article  CAS  Google Scholar 

  24. E.D. Dibildox-Alvararo, J.N. Rodrigues, L.A. Gioielli, J.F.T. Vazquez, A.G. Marnagoni, Cryst. Growth Des. 4, 731 (2004)

    Article  CAS  Google Scholar 

  25. D. Tang, A.G. Marangoni, J. Am. Oil Chem. Soc. 83, 309 (2006)

    Article  CAS  Google Scholar 

  26. D. Tang, A.G. Marangoni, Chem. Phys. Lett. 433, 248 (2006)

    Article  CAS  Google Scholar 

  27. D. Tang, A.G. Marangoni, J. Am. Oil Chem. Soc. (2008) (in press)

  28. W.H. Shih, W.Y. Shih, S.I. Kim, J. Liu, I.A. Aksay, Phys. Rev. A 42, 4772 (1990)

    Article  CAS  Google Scholar 

  29. T.S. Awad, M.A. Rogers, A.G. Marangoni, J. Phys. Chem. B 108, 171 (2004)

    Article  CAS  Google Scholar 

  30. H.D. Batte, A.G. Marangoni, Cryst. Growth Des. 5, 1703 (2005)

    Article  CAS  Google Scholar 

  31. A.G. Marangoni, M. Ollivon, Chem. Phys. Lett. 442, 360 (2007)

    Article  CAS  Google Scholar 

  32. S.S. Narine, A.G. Marangoni, Phys. Rev. E. 59, 1908 (1999)

    Article  CAS  Google Scholar 

  33. A.G. Marangoni, Phys. Rev. B. 62, 13951 (2000)

    Article  CAS  Google Scholar 

  34. A.G. Marangoni, M.A. Rogers, Appl. Phys. Lett. 82, 3239 (2003)

    Article  CAS  Google Scholar 

  35. A.A. Griffith, Philos. Trans. R. Soc. Lond. Ser. A 221, 163 (1921)

    Article  Google Scholar 

  36. T. Woignier, F. Despetis, J. Sol-Gel Sci. Technol. 19, 163 (2000)

    Article  CAS  Google Scholar 

  37. P.D. Beale, Phys. Rev. B: Condens. Matter 37, 5500 (1998)

    Google Scholar 

  38. S.G. Bardenhagen, J.U. Brackbill, Phys. Rev. E 62, 3882 (2000)

    Article  CAS  Google Scholar 

  39. W. Kloek, T. van Vliet, P. Walstra, J. Texture Stud. 36, 516 (1995)

    Article  Google Scholar 

  40. L. Duffours, T. Woignier, J. Phalippou, J. Non-Cryst. Solids 186, 321 (1995)

    Article  CAS  Google Scholar 

  41. H. Tanaka, Phys. Rev. E 59, 6842 (1999)

    Article  CAS  Google Scholar 

  42. R. Buscall, P.D.A. Mills, J.W. Goodwin, D.W. Lawson, J. Chem. Soc., Faraday Trans. I 84, 4249 (1988)

    Article  CAS  Google Scholar 

  43. A. Emmerling, J. Fricke, J. Sol-Gel Sci. Technol. 8, 781 (1997)

    CAS  Google Scholar 

  44. C.J. Rueb, C.F.S. Zukoskia, J Rheol. 41, 197 (1997)

    Article  CAS  Google Scholar 

  45. A.P. Roberts, E.J. Garboczi, J. Mech. Phys. Solids 50, 33 (2002)

    Article  Google Scholar 

  46. H.S. Ma, A.P. Roberts, J.H. Prevost, R. Jullien, G.W. Scherer, J. Non-Cryst. Solids 277, 127 (2000)

    Article  CAS  Google Scholar 

  47. D. Tang, A.G. Marangoni, J. Colloid Interface Sci. (2008) (in press)

  48. Z. Wu, B. Li, Phys. Rev. E 51, 16 (1995)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial assistance of Natural Sciences and Engineering Research Councial of Canada (NSERC) and Canada Research Chairs program. Helpful discussions with Dr. G.W. Scherer from Princeton University and Dr. H.S. Ma from Intel Corporation are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro G. Marangoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marangoni, A.G., Tang, D. Modeling the Rheological Properties of Fats: A Perspective and Recent Advances. Food Biophysics 3, 113–119 (2008). https://doi.org/10.1007/s11483-007-9049-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-007-9049-0

Keywords

Navigation