Skip to main content

Advertisement

Log in

Protective Role of Lactobacillus rhamnosus Probiotic in Reversing Cocaine-Induced Oxidative Stress, Glial Activation and Locomotion in Mice

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Cocaine abuse is known to cause inflammation, oxidative injury and alterations in the gut microbiota. Although emerging studies have demonstrated the role of gut microbiota in modulating neurological complications and behavior, the mechanism(s) underlying these processes remain unclear. In the present study, we investigated the protective effect of Lactobacillus rhamnosus probiotic on cocaine-induced oxidative stress, glial activation, and locomotion in mice. In this study, groups of male C56BL6 mice were administered gut-resident commensal bacteria L. rhamnosus probiotic (oral gavage) concurrently with cocaine (20 mg/kg, i.p.) or saline for 28 days and assessed for oxidative stress and cellular activation in both the gut and brain as well as alterations in locomotion behavior. Cocaine-induced gut dysregulation was associated with increased formation of 4-hydroxynonenal (4-HNE) adducts, increased expression of pERK-1/2, pNF-kB-p65 and antioxidant mediators (SOD1, GPx1). In cocaine administered mice, there was increased activation of both microglia and astrocytes in the striatum and cortex of the brain as shown by enhanced expression of CD11b and GFAP, respectively. Cocaine administration also resulted in increased locomotor activity in the open field test in these mice. Administration of L. rhamnosus attenuated cocaine-induced gut oxidative stress and inflammation as well as glial activation and locomotion. These results suggest the potential of microbial-based interventions to attenuate cocaine-mediated behavioral responses and neuroinflammation, in addition to systemic inflammation and oxidative damage.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  • Bharwani A, Mian MF, Surette MG, Bienenstock J, Forsythe P (2017) Oral treatment with Lactobacillus rhamnosus attenuates behavioural deficits and immune changes in chronic social stress. BMC Med 15:7

    Article  Google Scholar 

  • Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 108:16050–16055

    Article  CAS  Google Scholar 

  • Brown DN, Rosenholtz MJ, Marshall JB (1994) Ischemic colitis related to cocaine abuse. Am J Gastroenterol 89:1558–1561

    CAS  Google Scholar 

  • Chen RC, Xu LM, Du SJ, Huang SS, Wu H, Dong JJ, Huang JR, Wang XD, Feng WK, Chen YP (2016) Lactobacillus rhamnosus GG supernatant promotes intestinal barrier function, balances Treg and TH17 cells and ameliorates hepatic injury in a mouse model of chronic-binge alcohol feeding. Toxicol Lett 241:103–110

    Article  CAS  Google Scholar 

  • Chivero ET, Guo ML, Periyasamy P, Liao K, Callen SE, Buch S (2017) HIV-1 tat primes and activates microglial NLRP3 inflammasome-mediated neuroinflammation. J Neurosci 37:3599–3609

    Article  CAS  Google Scholar 

  • Chivero ET, Ahmad R, Thangaraj A, Periyasamy P, Kumar B, Kroeger E, Feng D, Guo ML, Roy S, Dhawan P, Singh AB, Buch S (2019) Cocaine induces inflammatory gut milieu by compromising the mucosal barrier integrity and altering the gut microbiota colonization. Sci Rep 9:12187

    Article  Google Scholar 

  • Chivero ET, Liao K, Niu F, Tripathi A, Tian C, Buch S, Hu G (2020) Engineered extracellular vesicles loaded with miR-124 attenuate cocaine-mediated activation of microglia. Front Cell Dev Biol 8:573

    Article  Google Scholar 

  • Chivero ET, Thangaraj A, Tripathi A, Periyasamy P, Guo ML, Buch S (2021) NLRP3 inflammasome blockade reduces cocaine-induced microglial activation and neuroinflammation. Mol Neurobiol 58:2215–2230

    Article  CAS  Google Scholar 

  • Colonna M, Butovsky O (2017) Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol 35:441–468

    Article  CAS  Google Scholar 

  • Costall B, Hui SC, Naylor RJ (1979) Hyperactivity induced by injection of dopamine into the accumbens nucleus: actions and interactions of neuroleptic, cholinomimetic and cholinolytic agents. Neuropharmacology 18:661–665

    Article  CAS  Google Scholar 

  • Costall B, Domeney AM, Naylor RJ (1984) Locomotor hyperactivity caused by dopamine infusion into the nucleus accumbens of rat brain: specificity of action. Psychopharmacology 82:174–180

    Article  CAS  Google Scholar 

  • Cotto B, Li H, Tuma RF, Ward SJ, Langford D (2018) Cocaine-mediated activation of microglia and microglial MeCP2 and BDNF production. Neurobiol Dis 117:28–41

    Article  CAS  Google Scholar 

  • Delfs JM, Schreiber L, Kelley AE (1990) Microinjection of cocaine into the nucleus accumbens elicits locomotor activation in the rat. J Neurosci 10:303–310

    Article  CAS  Google Scholar 

  • Dietrich JB, Mangeol A, Revel MO, Burgun C, Aunis D, Zwiller J (2005) Acute or repeated cocaine administration generates reactive oxygen species and induces antioxidant enzyme activity in dopaminergic rat brain structures. Neuropharmacology 48:965–974

    Article  CAS  Google Scholar 

  • Ersche KD, Hagan CC, Smith DG, Abbott S, Jones PS, Apergis-Schoute AM, Doffinger R (2014) Aberrant disgust responses and immune reactivity in cocaine-dependent men. Biol Psychiat 75:140–147

    Article  CAS  Google Scholar 

  • Flores K, Yadav SS, Katz AA, Seger R (2019) The nuclear translocation of mitogen-activated protein kinases: molecular mechanisms and use as novel therapeutic target. Neuroendocrinology 108:121–131

    Article  CAS  Google Scholar 

  • Fox HC, D’Sa C, Kimmerling A, Siedlarz KM, Tuit KL, Stowe R, Sinha R (2012) Immune system inflammation in cocaine dependent individuals: implications for medications development. Hum Psychopharmacol 27:156–166

    Article  CAS  Google Scholar 

  • Gu Z, Wu Y, Wang Y, Sun H, You Y, Piao C, Liu J, Wang Y (2020) Lactobacillus rhamnosus granules dose-dependently balance intestinal microbiome disorders and ameliorate chronic alcohol-induced liver injury. J Med Food 23:114–124

    Article  CAS  Google Scholar 

  • Guan X, Hu J, Li S (2008) Involvement of extracellular signal-regulated protein kinase in acute cocaine-induced c-fos in nucleus accumbens. Neurosci Lett 438:155–158

    Article  CAS  Google Scholar 

  • Guo ML, Liao K, Periyasamy P, Yang L, Cai Y, Callen SE, Buch S (2015) Cocaine-mediated microglial activation involves the ER stress-autophagy axis. Autophagy 11:995–1009

    Article  CAS  Google Scholar 

  • Guo ML, Periyasamy P, Liao K, Kook YH, Niu F, Callen SE, Buch S (2016) Cocaine-mediated downregulation of microglial miR-124 expression involves promoter DNA methylation. Epigenetics 11:819–830

    Article  Google Scholar 

  • Huang L, Zhou JG, Zhang Y, Wang F, Wang Y, Liu DH, Li XJ, Lv SP, Jin SH, Bai YJ, Ma H (2017) Opioid-induced constipation relief from fixed-ratio combination prolonged-release oxycodone/naloxone compared with oxycodone and morphine for chronic nonmalignant pain: a systematic review and meta-analysis of randomized controlled trials. J Pain Symptom Manage 54:737–748

    Article  Google Scholar 

  • Jang EY, Ryu YH, Lee BH, Chang SC, Yeo MJ, Kim SH, Folsom RJ, Schilaty ND, Kim KJ, Yang CH, Steffensen SC, Kim HY (2015) Involvement of reactive oxygen species in cocaine-taking behaviors in rats. Addict Biol 20:663–675

    Article  CAS  Google Scholar 

  • Jiang SZ, Sweat S, Dahlke SP, Loane K, Drossel G, Xu W, Tejeda HA, Gerfen CR, Eiden LE (2021) Cocaine-dependent acquisition of locomotor sensitization and conditioned place preference requires d1 dopaminergic signaling through a cyclic AMP, NCS-Rapgef2, ERK, and Egr-1/Zif268 pathway. J Neurosci 41:711–725

    Article  CAS  Google Scholar 

  • Karimi K, Kandiah N, Chau J, Bienenstock J, Forsythe P (2012) A Lactobacillus rhamnosus strain induces a heme oxygenase dependent increase in Foxp3+ regulatory T cells. PLoS One 7:e47556

    Article  CAS  Google Scholar 

  • Kedziora J, Bartosz G (1988) Down’s syndrome: a pathology involving the lack of balance of reactive oxygen species. Free Radic Biol Med 4:317–330

    Article  CAS  Google Scholar 

  • Kelly PH, Iversen SD (1976) Selective 6OHDA-induced destruction of mesolimbic dopamine neurons: abolition of psychostimulant-induced locomotor activity in rats. Eur J Pharmacol 40:45–56

    Article  CAS  Google Scholar 

  • Kiraly DD, Walker DM, Calipari ES, Labonte B, Issler O, Pena CJ, Ribeiro EA, Russo SJ, Nestler EJ (2016) Alterations of the host microbiome affect behavioral responses to cocaine. Sci Rep 6:35455

    Article  CAS  Google Scholar 

  • Kovacic P (2005) Role of oxidative metabolites of cocaine in toxicity and addiction: oxidative stress and electron transfer. Med Hypotheses 64:350–356

    Article  CAS  Google Scholar 

  • Levandowski ML, Hess AR, Grassi-Oliveira R, de Almeida RM (2016) Plasma interleukin-6 and executive function in crack cocaine-dependent women. Neurosci Lett 628:85–90

    Article  CAS  Google Scholar 

  • Liao K, Guo M, Niu F, Yang L, Callen SE, Buch S (2016) Cocaine-mediated induction of microglial activation involves the ER stress-TLR2 axis. J Neuroinflammation 13:33

    Article  Google Scholar 

  • Linder JD, Monkemuller KE, Raijman I, Johnson L, Lazenby AJ, Wilcox CM (2000) Cocaine-associated ischemic colitis. South Med J 93:909–913

    Article  CAS  Google Scholar 

  • Lingamfelter DC, Knight LD (2010) Sudden death from massive gastrointestinal hemorrhage associated with crack cocaine use: case report and review of the literature. Am J Forensic Med Pathol 31:98–99

    Article  Google Scholar 

  • Macedo DS, Vasconcelos SM, Andrade-Neto M, Belchior LD, Honorio Junior JE, Goncalves DO, Fonteles MM, Silva MI, Aguiar LM, Viana GS, de Sousa FC (2010) Cocaine-induced status epilepticus and death generate oxidative stress in prefrontal cortex and striatum of mice. Neurochem Int 56:183–187

    Article  CAS  Google Scholar 

  • Meng J, Banerjee S, Zhang L, Sindberg G, Moidunny S, Li B, Robbins DJ, Girotra M, Segura B, Ramakrishnan S, Roy S (2019) Opioids impair intestinal epithelial repair in HIV-infected humanized mice. Front Immunol 10:2999

    Article  CAS  Google Scholar 

  • Moreira FP, Medeiros JR, Lhullier AC, Souza LD, Jansen K, Portela LV, Lara DR, da Silva RA, Wiener CD, Oses JP (2016) Cocaine abuse and effects in the serum levels of cytokines IL-6 and IL-10. Drug Alcohol Depend 158:181–185

    Article  CAS  Google Scholar 

  • Narvaez JC, Magalhaes PV, Fries GR, Colpo GD, Czepielewski LS, Vianna P, Chies JA, Rosa AR, Von Diemen L, Vieta E, Pechansky F, Kapczinski F (2013) Peripheral toxicity in crack cocaine use disorders. Neurosci Lett 544:80–84

    Article  CAS  Google Scholar 

  • Nestler EJ (2005) The neurobiology of cocaine addiction. Sci Pract Perspect 3:4–10

    Article  Google Scholar 

  • Periyasamy P, Guo ML, Buch S (2016) Cocaine induces astrocytosis through ER stress-mediated activation of autophagy. Autophagy 12:1310–1329

    Article  CAS  Google Scholar 

  • Periyasamy P, Liao K, Kook YH, Niu F, Callen SE, Guo ML, Buch S (2018) Cocaine-mediated downregulation of miR-124 activates microglia by targeting KLF4 and TLR4 signaling. Mol Neurobiol 55:3196–3210

    Article  CAS  Google Scholar 

  • Pianca TG, Rosa RL, Cereser KMM, de Aguiar BW, de Abrahao RC, Lazzari PM, Kapczinski F, Pechansky F, Rohde LA, Szobot CM (2017) Differences in biomarkers of crack-cocaine adolescent users before/after abstinence. Drug Alcohol Depend 177:207–213

    Article  CAS  Google Scholar 

  • Plotnikov A, Zehorai E, Procaccia S, Seger R (2011) The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta 1813:1619–1633

    Article  CAS  Google Scholar 

  • Pomara C, Cassano T, D’Errico S, Bello S, Romano AD, Riezzo I, Serviddio G (2012) Data available on the extent of cocaine use and dependence: biochemistry, pharmacologic effects and global burden of disease of cocaine abusers. Curr Med Chem 19:5647–5657

    Article  CAS  Google Scholar 

  • Pomierny-Chamiolo L, Moniczewski A, Wydra K, Suder A, Filip M (2013) Oxidative stress biomarkers in some rat brain structures and peripheral organs underwent cocaine. Neurotox Res 23:92–102

    Article  CAS  Google Scholar 

  • Radwanska K, Caboche J, Kaczmarek L (2005) Extracellular signal-regulated kinases (ERKs) modulate cocaine-induced gene expression in the mouse amygdala. Eur J Neurosci 22:939–948

    Article  Google Scholar 

  • Rosen DR (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 364:362

    Article  CAS  Google Scholar 

  • Russo SJ et al (2009) Nuclear factor kappa B signaling regulates neuronal morphology and cocaine reward. J Neurosci 29:3529–3537

    Article  CAS  Google Scholar 

  • Saeedi BJ, Liu KH, Owens JA, Hunter-Chang S, Camacho MC, Eboka RU, Chandrasekharan B, Baker NF, Darby TM, Robinson BS, Jones RM, Jones DP, Neish AS (2020) Gut-resident lactobacilli activate hepatic Nrf2 and protect against oxidative liver injury. Cell Metab 31:956–968

    Article  CAS  Google Scholar 

  • Sahu G, Farley K, El-Hage N, Aiamkitsumrit B, Fassnacht R, Kashanchi F, Ochem A, Simon GL, Karn J, Hauser KF, Tyagi M (2015) Cocaine promotes both initiation and elongation phase of HIV-1 transcription by activating NF-kappaB and MSK1 and inducing selective epigenetic modifications at HIV-1 LTR. Virology 483:185–202

    Article  CAS  Google Scholar 

  • Sindberg GM, Callen SE, Banerjee S, Meng J, Hale VL, Hegde R, Cheney PD, Villinger F, Roy S, Buch S (2019) Morphine potentiates dysbiotic microbial and metabolic shifts in acute SIV infection. J Neuroimmune Pharmacol 14:200–214

    Article  Google Scholar 

  • Sinet PM (1982) Metabolism of oxygen derivatives in down’s syndrome. Ann N Y Acad Sci 396:83–94

    Article  CAS  Google Scholar 

  • Streit WJ, Xue QS (2009) Life and death of microglia. J Neuroimmune Pharmacol 4:371–379

    Article  Google Scholar 

  • Tao Y, Drabik KA, Waypa TS, Musch MW, Alverdy JC, Schneewind O, Chang EB, Petrof EO (2006) Soluble factors from Lactobacillus GG activate MAPKs and induce cytoprotective heat shock proteins in intestinal epithelial cells. Am J Physiol Cell Physiol 290:C1018-1030

    Article  CAS  Google Scholar 

  • Thangaraj A, Periyasamy P, Guo ML, Chivero ET, Callen S, Buch S (2020) Mitigation of cocaine-mediated mitochondrial damage, defective mitophagy and microglial activation by superoxide dismutase mimetics. Autophagy 16:289–312

    Article  CAS  Google Scholar 

  • Valjent E, Corvol JC, Trzaskos JM, Girault JA, Herve D (2006a) Role of the ERK pathway in psychostimulant-induced locomotor sensitization. BMC Neurosci 7:20

    Article  Google Scholar 

  • Valjent E, Corbille AG, Bertran-Gonzalez J, Herve D, Girault JA (2006b) Inhibition of ERK pathway or protein synthesis during reexposure to drugs of abuse erases previously learned place preference. Proc Natl Acad Sci USA 103:2932–2937

    Article  CAS  Google Scholar 

  • Velazquez Rivera I, Velazquez Clavarana L, Garcia Velasco P, Melero Ramos C (2019) Opioid-induced constipation in chronic pain: experience with 180 patients. J Opioid Manag 15:69–76

    Article  Google Scholar 

  • Volpe GE, Ward H, Mwamburi M, Dinh D, Bhalchandra S, Wanke C, Kane AV (2014) Associations of cocaine use and HIV infection with the intestinal microbiota, microbial translocation, and inflammation. J Stud Alcohol Drugs 75:347–357

    Article  Google Scholar 

  • Wang Y, Liu Y, Sidhu A, Ma Z, McClain C, Feng W (2012) Lactobacillus rhamnosus GG culture supernatant ameliorates acute alcohol-induced intestinal permeability and liver injury. Am J Physiol Gastrointest Liver Physiol 303:G32-G41

    Article  CAS  Google Scholar 

  • Wang Y, Liu Y, Kirpich I, Ma Z, Wang C, Zhang M, Suttles J, McClain C, Feng W (2013) Lactobacillus rhamnosus GG reduces hepatic TNFalpha production and inflammation in chronic alcohol-induced liver injury. J Nutr Biochem 24:1609–1615

    Article  CAS  Google Scholar 

  • Wattoo MA, Osundeko O (1999) Cocaine-induced intestinal ischemia. West J Med 170:47–49

    CAS  Google Scholar 

  • Will RG, Martz JR, Dominguez JM (2016) The medial preoptic area modulates cocaine-induced locomotion in male rats. Behav Brain Res 305:218–222

    Article  CAS  Google Scholar 

  • Wong HP, Yu L, Lam EK, Tai EK, Wu WK, Cho CH (2007) Nicotine promotes cell proliferation via alpha7-nicotinic acetylcholine receptor and catecholamine-synthesizing enzymes-mediated pathway in human colon adenocarcinoma HT-29 cells. Toxicol Appl Pharmacol 221:261–267

    Article  CAS  Google Scholar 

  • Xiang T, Fei R, Wang Z, Shen Z, Qian J, Chen W (2016) Nicotine enhances invasion and metastasis of human colorectal cancer cells through the nicotinic acetylcholine receptor downstream p38 MAPK signaling pathway. Oncol Rep 35:205–210

    Article  CAS  Google Scholar 

  • Xu H, Wang J, Cai J, Feng W, Wang Y, Liu Q, Cai L (2019) Protective effect of Lactobacillus rhamnosus GG and its supernatant against myocardial dysfunction in obese mice exposed to intermittent hypoxia is associated with the activation of Nrf2 pathway. Int J Biol Sci 15:2471–2483

    Article  CAS  Google Scholar 

  • Yan F, Cao H, Cover TL, Whitehead R, Washington MK, Polk DB (2007) Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 132:562–575

    Article  CAS  Google Scholar 

  • Zhang Y, Mantsch JR, Schlussman SD, Ho A, Kreek MJ (2002) Conditioned place preference after single doses or “binge” cocaine in C57BL/6J and 129/J mice. Pharmacol Biochem Behav 73:655–662

    Article  CAS  Google Scholar 

  • Zhang L, Meng J, Ban Y, Jalodia R, Chupikova I, Fernandez I, Brito N, Sharma U, Abreu MT, Ramakrishnan S, Roy S (2019) Morphine tolerance is attenuated in germfree mice and reversed by probiotics, implicating the role of gut microbiome. Proc Natl Acad Sci USA 116:13523–13532

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Mystera M Samuelson and the UNMC behavior Core Facility for assisting with the behavior assays and analysis. We are also grateful to Fang Niu for technical assistance.

Funding

This work was supported by NIH grant R01DA050545 (SB), R01DA050545-02S1 (PI: SB & ETC as Research Supplement recipient), R21DA046831 (ETC) and the Nebraska Centre for Substance Abuse Research (NCSAR).

Author information

Authors and Affiliations

Authors

Contributions

Experiments, data collection and analysis were performed by ETC, SS, SS, AT, LG, GBE, NF and SC. The first draft of the manuscript was written by ETC and all authors commented on previous versions of the manuscript. SB and ETC contributed to the study conception and design. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ernest T. Chivero or Shilpa Buch.

Ethics declarations

Ethical Approval

All animal procedures were performed according to the protocols approved by the Institutional Animal Care and Use Committee of the University of Nebraska Medical Centre and the National Institutes of Health.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 232 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chivero, E.T., Sil, S., Singh, S. et al. Protective Role of Lactobacillus rhamnosus Probiotic in Reversing Cocaine-Induced Oxidative Stress, Glial Activation and Locomotion in Mice. J Neuroimmune Pharmacol 17, 62–75 (2022). https://doi.org/10.1007/s11481-021-10020-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-021-10020-9

Keywords

Navigation