Skip to main content

Advertisement

Log in

Increased Sensitivity to Cocaine Self-Administration in HIV-1 Transgenic Rats is Associated with Changes in Striatal Dopamine Transporter Binding

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Cocaine abuse in HIV patients accelerates the progression and severity of neuropathology, motor impairment and cognitive dysfunction compared to non-drug using HIV patients. Cocaine and HIV interact with the dopamine transporter (DAT); however, the effect of their interaction on DAT binding remains understudied. The present study compared the dose–response functions for intravenous self-administration of cocaine and heroin between male HIV-1 transgenic (HIV-1 Tg) and Fischer 344 rats. The cocaine and heroin dose–response functions exhibit an inverted U-shape for both HIV-1 Tg and F344 rats. For cocaine, the number of infusions for each dose on the ascending limb was greater for HIV-1 Tg versus F344 rats. No significant changes in the heroin dose–response function were observed in HIV-1 Tg animals. Following the conclusion of self-administration experiments, DAT binding was assessed in striatal membranes. Saturation binding of the cocaine analog [125I] 3β-(4-iodophenyl)tropan-2β-carboxylic acid methyl ester ([125I]RTI-55) in rat striatal membranes resulted in binding curves that were best fit to a two-site binding model, allowing for calculation of dissociation constant (Kd) and binding density (Bmax) values that correspond to high- and low-affinity DAT binding sites. Control HIV-1 Tg rats exhibited a significantly greater affinity (i.e., decrease in Kd value) in the low-affinity DAT binding site compared to control F344 rats. Furthermore, cocaine self-administration in HIV-1 Tg rats increased low-affinity Kd (i.e., decreased affinity) compared to levels observed in control F344 rats. Cocaine also increased low-affinity Bmax in HIV-1 Tg rats as compared to controls, indicating an increase in the number of low-affinity DAT binding sites. F344 rats did not exhibit any change in high- or low-affinity Kd or Bmax values following cocaine or heroin self-administration. The increase in DAT affinity in cocaine HIV-1 Tg rats is consistent with the leftward shift of the ascending limb of the cocaine dose–response curve observed in HIV-1 Tg vs. F344 rats, and has major implications for the function of cocaine binding to DAT in HIV patients. The absence of HIV-related changes in heroin intake are likely due to less dopaminergic involvement in the mediation of heroin reward, further emphasizing the preferential influence of HIV on dopamine-related behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aksenova MV, Silvers JM, Aksenov MY, Nath A, Ray PD, Mactutus CF, Booze RM (2006) HIV-1 Tat neurotoxicity in primary cultures of rat midbrain fetal neurons: changes in dopamine transporter binding and immunoreactivity. Neurosci Lett 395:235–239

    Article  CAS  PubMed  Google Scholar 

  • Anthony JC, Vlahov D, Nelson KE, Cohn S, Astemborski J, Solomon L (1991) New evidence on intravenous cocaine use and the risk of infection with human immunodeficiency virus type 1. Am J Epidemiol 134:1175–1189

    CAS  PubMed  Google Scholar 

  • Baldwin GC, Roth MD, Tashkin DP (1998) Acute and chronic effects of cocaine on the immune system and the possible link to AIDS. J Neuroimmunol 83:133–138

    Article  CAS  PubMed  Google Scholar 

  • Basselin M et al (2011) Imaging upregulated brain arachidonic acid metabolism in HIV-1 transgenic rats. J Cereb Blood Flow Metab 31:486–493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bennett BA, Rusyniak DE, Hollingsworth CK (1995) HIV-1 gp120-induced neurotoxicity to midbrain dopamine cultures. Brain Res 705:168–176

    Article  CAS  PubMed  Google Scholar 

  • Beveridge TJ, Smith HR, Nader MA, Porrino LJ (2009) Abstinence from chronic cocaine self-administration alters Striatal dopamine systems in rhesus monkeys. Neuropsychopharmacology 34:1162–1171

  • Boja JW et al (1991) [125I]RTI-55: a potent ligand for dopamine transporters. Eur J Pharmacol 194:133–134

  • Buch S, Yao H, Guo M, Mori T, Su TP, Wang J (2011) Cocaine and HIV-1 interplay: molecular mechanisms of action and addiction. J Neuroimmune Pharmacol 6:503–515

    Article  PubMed Central  PubMed  Google Scholar 

  • Burdo TH, Katner SN, Taffe MA, Fox HS (2006) Neuroimmunity, drugs of abuse, and neuroAIDS. J Neuroimmune Pharmacol 1:41–49

    Article  PubMed  Google Scholar 

  • Chaisson RE, Bacchetti P, Osmond D, Brodie B, Sande MA, Moss AR (1989) Cocaine use and HIV infection in intravenous drug users in San Francisco. J Am Med Assoc 261:561–565

    Article  CAS  Google Scholar 

  • Chang L, Wang GJ, Volkow ND, Ernst T, Telang F, Logan J, Fowler JS (2008) Decreased brain dopamine transporters are related to cognitive deficits in HIV patients with or without cocaine abuse. Neuroimage 42:869–878

    Article  PubMed Central  PubMed  Google Scholar 

  • Cook JA et al (2008) Crack cocaine, disease progression, and mortality in a multicenter cohort of HIV-1 positive women. AIDS 22:1355–1363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crombag HS, Ferrario CR, Robinson TE (2008) The rate of intravenous cocaine or amphetamine delivery does not influence drug-taking and drug-seeking behavior in rats. Pharmacol Biochem Behav 90:797–804

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davies HM, Saikali E, Huby NJ, Gilliatt VJ, Matasi JJ, Sexton T, Childers SR (1994) Synthesis of 2 beta-acyl-3 beta-aryl-8-azabicyclo[3.2.1]octanes and their binding affinities at dopamine and serotonin transport sites in rat striatum and frontal cortex. J Med Chem 37:1262–1268

    Article  CAS  PubMed  Google Scholar 

  • Davies J, Everall IP, Weich S, McLaughlin J, Scaravilli F, Lantos PL (1997) HIV-associated brain pathology in the United Kingdom: an epidemiological study. AIDS 11:1145–1150

    Article  CAS  PubMed  Google Scholar 

  • Dhillon NK et al (2007) Cocaine-mediated enhancement of virus replication in macrophages: implications for human immunodeficiency virus-associated dementia. J Neurovirol 13:483–495

    Article  CAS  PubMed  Google Scholar 

  • Doherty MC, Garfein RS, Monterroso E, Brown D, Vlahov D (2000) Correlates of HIV infection among young adult short-term injection drug users. AIDS 14:717–726

    Article  CAS  PubMed  Google Scholar 

  • Ellis RJ, Childers ME, Cherner M, Lazzaretto D, Letendre S, Grant I (2003) Increased human immunodeficiency virus loads in active methamphetamine users are explained by reduced effectiveness of antiretroviral therapy. J Infect Dis 188:1820–1826

    Article  PubMed  Google Scholar 

  • Ettenberg A, Pettit HO, Bloom FE, Koob GF (1982) Heroin and cocaine intravenous self-administration in rats: mediation by separate neural systems. Psychopharmacology (Berl) 78:204–209

    Article  CAS  Google Scholar 

  • Ferris MJ, Mactutus CF, Booze RM (2008) Neurotoxic profiles of HIV, psychostimulant drugs of abuse, and their concerted effect on the brain: current status of dopamine system vulnerability in NeuroAIDS. Neurosci Biobehav Rev 32:883–909

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferris MJ, Frederick-Duus D, Fadel J, Mactutus CF, Booze RM (2009) The human immunodeficiency virus-1-associated protein, Tat1-86, impairs dopamine transporters and interacts with cocaine to reduce nerve terminal function: a no-net-flux microdialysis study. Neuroscience 159:1292–1299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferris MJ, Frederick-Duus D, Fadel J, Mactutus CF, Booze RM (2010) Hyperdopaminergic tone in HIV-1 protein treated rats and cocaine sensitization. J Neurochem 115:885–896

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fiala M et al (1998) Cocaine enhances monocyte migration across the blood–brain barrier. Cocaine’s connection to AIDS dementia and vasculitis? Adv Exp Med Biol 437:199–205

    Article  CAS  PubMed  Google Scholar 

  • Gaskill PJ, Calderon TM, Luers AJ, Eugenin EA, Javitch JA, Berman JW (2009) Human immunodeficiency virus (HIV) infection of human macrophages is increased by dopamine: a bridge between HIV-associated neurologic disorders and drug abuse. Am J Pathol 175:1148–1159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gatley SJ, Volkow ND, Fowler JS, Dewey SL, Logan J (1995) Sensitivity of striatal [11C]cocaine binding to decreases in synaptic dopamine. Synapse 20:137–144

  • Gatley SJ, Volkow ND, Gifford AN, Ding YS, Logan J, Wang GJ (1997) Model for estimating dopamine transporter occupancy and subsequent increases in synaptic dopamine using positron emission tomography and carbon-11-labeled cocaine. Biochem Pharmacol 53:43–52

    Article  CAS  PubMed  Google Scholar 

  • Gelman BB, Spencer JA, Holzer CE 3rd, Soukup VM (2006) Abnormal striatal dopaminergic synapses in national NeuroAIDS tissue consortium subjects with HIV encephalitis. J Neuroimmune Pharmacol 1:410–420

  • Graef KH, Bonisch H (1988) The transport of amines across the axonal membranes of noradrenergic and dopaminergic neurones. In: Trendelenburg U, Weiner N (eds) Handbook of experimental pharmacology. Springer, Berlin, pp 193–245

    Google Scholar 

  • Harrod SB, Mactutus CF, Fitting S, Hasselrot U, Booze RM (2008) Intra-accumbal Tat1-72 alters acute and sensitized responses to cocaine. Pharmacol Biochem Behav 90:723–729

  • Hemby SE, Martin TJ, Co C, Dworkin SI, Smith JE (1995) The effects of intravenous heroin administration on extracellular nucleus accumbens dopamine concentrations as determined by in vivo microdialysis. J Pharmacol Exp Ther 273:591–598

    CAS  PubMed  Google Scholar 

  • Hemby SE, Smith JE, Dworkin SI (1996) The effects of eticlopride and naltrexone on responding maintained by food, cocaine, heroin and cocaine/heroin combinations in rats. J Pharmacol Exp Ther 277:1247–1258

    CAS  PubMed  Google Scholar 

  • Hemby SE, Co C, Koves TR, Smith JE, Dworkin SI (1997a) Differences in extracellular dopamine concentrations in the nucleus accumbens during response-dependent and response-independent cocaine administration in the rat. Psychopharmacology (Berl) 133:7–16

    Article  CAS  Google Scholar 

  • Hemby SE, Johnson BA, Dworkin SI (1997b) Neurobiological basis of drug reinforcement. In: Johnson BA, Roache JD (eds) Drug addiction and its treatment: nexus of neuroscience and behavior. Lippincott-Raven Publishers, Philadelphia, pp 137–169

    Google Scholar 

  • Hemby SE, Co C, Dworkin SI, Smith JE (1999) Synergistic elevations in nucleus accumbens extracellular dopamine concentrations during self-administration of cocaine/heroin combinations (Speedball) in rats. J Pharmacol Exp Ther 288:274–280

    CAS  PubMed  Google Scholar 

  • Horn AS (1990) Dopamine uptake: a review of progress in the last decade. Prog Neurobiol 34:387–400

    Article  CAS  PubMed  Google Scholar 

  • Howell LL, Wilcox KM (2001) Intravenous drug self-administration in nonhuman primates. In: JJ B (ed) Methods of behavior analysis in neuroscience. CRC Press, Boca Raton, pp 91–110

    Google Scholar 

  • Hu S, Sheng WS, Lokensgard JR, Peterson PK, Rock RB (2009) Preferential sensitivity of human dopaminergic neurons to gp120-induced oxidative damage. J Neurovirol 15:401–410

    Article  CAS  PubMed  Google Scholar 

  • Kalivas PW (2004) Recent understanding in the mechanisms of addiction. Curr Psychiatry Rep 6:347–351

    Article  PubMed  Google Scholar 

  • Kalivas PW, Volkow ND (2005) The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162:1403–1413

    Article  PubMed  Google Scholar 

  • Kass MD, Liu X, Vigorito M, Chang L, Chang SL (2010) Methamphetamine-induced behavioral and physiological effects in adolescent and adult HIV-1 transgenic rats. J Neuroimmune Pharmacol 5:566–573

    Article  PubMed  Google Scholar 

  • Kimelberg HK (1986) Occurrence and functional significance of serotonin and catecholamine uptake by astrocytes. Biochem Pharmacol 35:2273–2281

    Article  CAS  PubMed  Google Scholar 

  • LaLumiere RT, Kalivas PW (2008) Glutamate release in the nucleus accumbens core is necessary for heroin seeking. J Neurosci 28:3170–3177

    Article  CAS  PubMed  Google Scholar 

  • Larrat EP, Zierler S (1993) Entangled epidemics: cocaine use and HIV disease. J Psychoactive Drugs 25:207–221

    Article  CAS  PubMed  Google Scholar 

  • Letchworth SR, Nader MA, Smith HR, Friedman DP, Porrino LJ (2001) Progression of changes in dopamine transporter binding site density as a result of cocaine self-administration in rhesus monkeys. J Neurosci 21:2799–2807

    CAS  PubMed  Google Scholar 

  • Little KY, Carroll FI, Butts JD (1998a) Striatal [125I]RTI-55 binding sites in cocaine-abusing humans. Prog Neuropsychopharmacol Biol Psychiatry 22:455–466

  • Little KY et al (1998b) Brain dopamine transporter messenger RNA and binding sites in cocaine users: a postmortem study. Arch Gen Psychiatry 55:793–799

    Article  CAS  PubMed  Google Scholar 

  • Little KY, Zhang L, Desmond T, Frey KA, Dalack GW, Cassin BJ (1999) Striatal dopaminergic abnormalities in human cocaine users. Am J Psychiatry 156:238–245

    CAS  PubMed  Google Scholar 

  • Liu Y, Roberts DC, Morgan D (2005) Sensitization of the reinforcing effects of self-administered cocaine in rats: effects of dose and intravenous injection speed. Eur J Neurosci 22:195–200

    Article  PubMed Central  PubMed  Google Scholar 

  • Lynch WJ, Hemby SE (2011) Drug reinforcement in animals. In: Johnson BA (ed) Addiction medicine: Science and practice, vol 1. Springer, New York, pp 117–128

  • Madras BK, Fahey MA, Bergman J, Canfield DR, Spealman RD (1989a) Effects of cocaine and related drugs in nonhuman primates. I. [3H]cocaine binding sites in caudate-putamen. J Pharmacol Exp Ther 251:131–141

    CAS  PubMed  Google Scholar 

  • Madras BK, Spealman RD, Fahey MA, Neumeyer JL, Saha JK, Milius RA (1989b) Cocaine receptors labeled by [3H]2 beta-carbomethoxy-3 beta-(4-fluorophenyl)tropane. Mol Pharmacol 36:518–524

  • Meade CS, Conn NA, Skalski LM, Safren SA (2011) Neurocognitive impairment and medication adherence in HIV patients with and without cocaine dependence. J Behav Med 34:128–138

    Article  PubMed Central  PubMed  Google Scholar 

  • Midde NM, Gomez AM, Zhu J (2012) HIV-1 Tat protein decreases dopamine transporter cell surface expression and vesicular monoamine transporter-2 function in rat striatal synaptosomes. J Neuroimmune Pharmacol 7:629–639

    Article  PubMed Central  PubMed  Google Scholar 

  • Midde NM, Huang X, Gomez AM, Booze RM, Zhan CG, Zhu J (2013) Mutation of tyrosine 470 of human dopamine transporter is critical for HIV-1 tat-induced inhibition of dopamine transport and transporter conformational transitions. J Neuroimmune Pharmacol 8:975–987

  • Miguens M, Del Olmo N, Higuera-Matas A, Torres I, Garcia-Lecumberri C, Ambrosio E (2008) Glutamate and aspartate levels in the nucleus accumbens during cocaine self-administration and extinction: a time course microdialysis study. Psychopharmacology (Berl) 196:303–313

    Article  CAS  Google Scholar 

  • Mireylees SE, Brammer NT, Buckley GA (1986) A kinetic study of the in vitro uptake of [3H]dopamine over a wide range of concentrations by rat striatal preparations. Biochem Pharmacol 35:4065–4071

  • Moritz AE et al (2013) Phosphorylation of dopamine transporter serine 7 modulates cocaine analog binding. J Biol Chem 288:20–32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nath A et al (2002) Molecular basis for interactions of HIV and drugs of abuse. J Acquir Immune Defic Syndr 31(Suppl 2):S62–69

    Article  CAS  PubMed  Google Scholar 

  • Norman LR, Basso M, Kumar A, Malow R (2009) Neuropsychological consequences of HIV and substance abuse: a literature review and implications for treatment and future research. Curr Drug Abuse Rev 2:143–156

    Article  CAS  PubMed  Google Scholar 

  • Pattison LP, McIntosh S, Budygin EA, Hemby SE (2012) Differential regulation of accumbal dopamine transmission in rats following cocaine, heroin and speedball self-administration. J Neurochem 122:138–146

    Article  CAS  PubMed  Google Scholar 

  • Pattison LP, McIntosh S, Sexton T, Childers SR, Hemby SE (2014) Changes in dopamine transporter binding in nucleus accumbens following chronic self-administration cocaine: heroin combinations. Synapse 68:437–444

  • Peng J, Vigorito M, Liu X, Zhou D, Wu X, Chang SL (2010) The HIV-1 transgenic rat as a model for HIV-1 infected individuals on HAART. J Neuroimmunol 218:94–101

    Article  CAS  PubMed  Google Scholar 

  • Pettit HO, Ettenberg A, Bloom FE, Koob GF (1984) Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacology (Berl) 84:167–173

    Article  CAS  Google Scholar 

  • Pierce RC, Kalivas PW (1997) A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Rev 25:192–216

    Article  CAS  PubMed  Google Scholar 

  • Purohit V, Rapaka R, Shurtleff D (2011) Drugs of abuse, dopamine, and HIV-associated neurocognitive disorders/HIV-associated dementia. Mol Neurobiol 44:102–110

    Article  CAS  PubMed  Google Scholar 

  • Reid W et al (2001) An HIV-1 transgenic rat that develops HIV-related pathology and immunologic dysfunction. Proc Natl Acad Sci 98:9271–9276

  • Roberts DCS, Koob GF (1982) Disruption of cocaine self-administration following 6-hydroxydopamine lesions of the ventral tegmental area in rats. Pharmacol Biochem Behav 17:901–904

    Article  CAS  PubMed  Google Scholar 

  • Roberts DCS, Koob GF, Klonoff P, Fibiger HC (1980) Extinction and recovery of self-administration following 6-hydroxydopamine lesions of the nucleus accumbens. Pharmacol Biochem Behav 12:781–787

    Article  CAS  PubMed  Google Scholar 

  • Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 18:247–291

    Article  CAS  PubMed  Google Scholar 

  • Roth MD, Tashkin DP, Choi R, Jamieson BD, Zack JA, Baldwin GC (2002) Cocaine enhances human immunodeficiency virus replication in a model of severe combined immunodeficient mice implanted with human peripheral blood leukocytes. J Infect Dis 185:701–705

    Article  CAS  PubMed  Google Scholar 

  • Rothman RB et al (1994) Studies of the biogenic amine transporters. IV. Demonstration of a multiplicity of binding sites in rat caudate membranes for the cocaine analog [125I]RTI-55. J Pharmacol Exp Ther 270:296–309

  • Royal W 3rd, Wang H, Jones O, Tran H, Bryant JL (2007) A vitamin A deficient diet enhances proinflammatory cytokine, mu opioid receptor, and HIV-1 expression in the HIV-1 transgenic rat. J Neuroimmunol 185:29–36

  • Royal W 3rd, Zhang L, Guo M, Jones O, Davis H, Bryant JL (2012) Immune activation, viral gene product expression and neurotoxicity in the HIV-1 transgenic rat. J Neuroimmunol 247:16–24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schindler CW, Panlilio LV, Thorndike EB (2009) Effect of rate of delivery of intravenous cocaine on self-administration in rats. Pharmacol Biochem Behav 93:375–381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schindler CW, Cogan ES, Thorndike EB, Panlilio LV (2011) Rapid delivery of cocaine facilitates acquisition of self-administration in rats: an effect masked by paired stimuli. Pharmacol Biochem Behav 99:301–306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shapshak P et al (1996) HIV-1 neuropathogenesis and abused drugs: current reviews, problems, and solutions. Adv Exp Med Biol 402:171–186

    Article  CAS  PubMed  Google Scholar 

  • Staley JK, Basile M, Flynn DD, Mash DC (1994a) Visualizing dopamine and serotonin transporters in the human brain with the potent cocaine analogue [125I]RTI-55: in vitro binding and autoradiographic characterization. J Neurochem 62:549–556

  • Staley JK, Hearn WL, Ruttenber AJ, Wetli CV, Mash DC (1994b) High affinity cocaine recognition sites on the dopamine transporter are elevated in fatal cocaine overdose victims. J Pharmacol Exp Ther 271:1678–1685

    CAS  PubMed  Google Scholar 

  • Stamford JA, Kruk ZL, Millar J (1986) In vivo voltammetric characterization of low affinity striatal dopamine uptake: drug inhibition profile and relation to dopaminergic innervation density. Brain Res 373:85–91

    Article  CAS  PubMed  Google Scholar 

  • Sultana S, Li H, Puche A, Jones O, Bryant JL, Royal W (2010) Quantitation of parvalbumin + neurons and human immunodeficiency virus type 1 (HIV-1) regulatory gene expression in the HIV-1 transgenic rat: effects of vitamin A deficiency and morphine. J Neurovirol 16:33–40

    Article  CAS  PubMed  Google Scholar 

  • Swift RM, Lewis DC (2008) Principles of nervous system pharmacology. In: Golan DE, Tashjian AHJ, Armstrong EJ, Armstrong AW (eds) Principles of pharmacology: the pathophysiologic basis of drug therapy. 2nd ed. Lippincott Williams & Wilkins, pp 283–304

  • Vanderschuren LJ, Ahmed SH (2013) Animal studies of addictive behavior. Cold Spring Harb Perspect Medicaid 3:a011932

    Google Scholar 

  • Wakabayashi KT, Weiss MJ, Pickup KN, Robinson TE (2010) Rats markedly escalate their intake and show a persistent susceptibility to reinstatement only when cocaine is injected rapidly. J Neurosci 30:11346–11355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wallace DR, Dodson S, Nath A, Booze RM (2006) Estrogen attenuates gp120- and Tat1-72-induced oxidative stress and prevents loss of dopamine transporter function. Synapse 59:51–60

  • Wang GJ, Chang L, Volkow ND, Telang F, Logan J, Ernst T, Fowler JS (2004) Decreased brain dopaminergic transporters in HIV-associated dementia patients. Brain J Neurol 127:2452–2458

  • Webber MP, Schoenbaum EE, Gourevitch MN, Buono D, Klein RS (1999) A prospective study of HIV disease progression in female and male drug users. AIDS 13:257–262

    Article  CAS  PubMed  Google Scholar 

  • Wilson JM, Kish SJ (1996) The vesicular monoamine transporter, in contrast to the dopamine transporter, is not altered by chronic cocaine self-administration in the rat. J Neurosci 16:3507–3510

    CAS  PubMed  Google Scholar 

  • Wilson JM et al (1994) Heterogeneous subregional binding patterns of 3H-WIN 35,428 and 3H-GBR 12,935 are differentially regulated by chronic cocaine self-administration. J Neurosci 14:2966–2979

  • Wydra K, Golembiowska K, Zaniewska M, Kaminska K, Ferraro L, Fuxe K, Filip M (2013) Accumbal and pallidal dopamine, glutamate and GABA overflow during cocaine self-administration and its extinction in rats. Addict Biol 18:307–324

    Article  CAS  PubMed  Google Scholar 

  • Zauli G, Secchiero P, Rodella L, Gibellini D, Mirandola P, Mazzoni M, Milani D, Dowd DR, Capitani S, Vitale M (2000) HIV-1 Tat-mediated inhibition of the tyrosine hydroxylase gene expression in dopaminergic neuronal cells. J Biol Chem 275:4159–4165

  • Zhu J, Mactutus CF, Wallace DR, Booze RM (2009) HIV-1 Tat protein-induced rapid and reversible decrease in [3H]dopamine uptake: dissociation of [3H]dopamine uptake and [3H]2beta-carbomethoxy-3-beta-(4-fluorophenyl)tropane (WIN 35,428) binding in rat striatal synaptosomes. J Pharmacol Exp Ther 329:1071–1083

Download references

Acknowledgments

The study was supported in part by the National Institute of Drug Abuse through grant R01DA012498 (SEH).

Ethical Standards

The experiments contained herein were approved by the Wake Forest School of Medicine Animal Care and Use Committee and were conducted in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Conflict of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott E. Hemby.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McIntosh, S., Sexton, T., Pattison, L.P. et al. Increased Sensitivity to Cocaine Self-Administration in HIV-1 Transgenic Rats is Associated with Changes in Striatal Dopamine Transporter Binding. J Neuroimmune Pharmacol 10, 493–505 (2015). https://doi.org/10.1007/s11481-015-9594-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-015-9594-0

Keywords

Navigation