Skip to main content

Advertisement

Log in

Plasmonic-based Solar Cell: Geometrical Optimization of 1D-nanostructured Grating for Enhanced Efficiency

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This study reports the generation of surface plasmon polariton (SPPs) by varied geometrical effects of gold (Au) and silver (Ag) plasmonic grating to realize efficiency enhancement of solar cell by finite elemental analysis (FEA) using COMSOL RF module 5.3a. This technique is quite helpful for far-field and near-field analysis which is required for the confirmation of the excitation of the SPPs. Plasmonic effect can be utilized from metallic materials; the upshot of Au and Ag plasmonic grating assembly upon light absorption in a-Si photovoltaic device has been investigated. In this paper, various plasmonic grating coupling setups for Au and Ag have been designed and studied the transmission spectra with varying grating slit width sizes (80–540) nm and thicknesses 40 nm, 50 nm, and 60 nm but constant periodicity of unit cell (Λ = 720 nm). The slit width of 240 nm nearly one-third of periodicity of the grating is optimum for efficient excitation of the SPPs and hence contributes more for efficiency enhancement of the solar cell. Quite interestingly, resonance wavelength and its variation in full width at half maximum (FWHM) with fixed values of Au and Ag thicknesses has been observed. This paper also reports the study of coupling efficiency for Au and Ag plasmonic gratings. Effective excitation of SPPs inclines toward increased electric/magnetic fields in proximity of slit, henceforth growing the light absorption in substratum. This finding is associated with the existence of strongest plasmonic mode known as fundamental mode/harmonics. Variation in the electric field y-component (Ey) and electric field normal component (E_norm) across cross sectional length of solar cell for Au plasmonic grating with slit thickness of 50 nm has been reported to be efficient in a-Si thin-film solar cell to attain better photoabsorption. This type of geometry can be utilized for solar cells for enhanced absorption of solar spectrum to design an efficient photovoltaic device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44

Similar content being viewed by others

Availability of Data and Materials

All data generated or analyzed during this study are included in this published article.

References

  1. Furlan J et al (198) a-Si versus c-Si material and solar cells similarities and differences. In Proceedings. Electrotechnical Conference Integrating Research, Industry and Education in Energy and Communication Engineering. IEEE

  2. Rao J, Varlamov S (2013) Light trapping in thin film polycrystalline silicon solar cell using diffractive gratings. Energy Procedia 33:129–136

    Article  CAS  Google Scholar 

  3. Nakayama K, Tanabe K, Atwater HA (2008) Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl Phys Lett 93(12):121904

    Article  Google Scholar 

  4. Pala RA et al (2009) Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv Mater 21(34):3504–3509

    Article  CAS  Google Scholar 

  5. Shen H, Maes B (2011) Combined plasmonic gratings in organic solar cells. Opt Express 19(106):A1202–A1210

    Article  CAS  PubMed  Google Scholar 

  6. Sarhan AR et al (2020) Modeling of fiber optic gold SPR sensor using different dielectric function models: A comparative study. Plasmonics 15(6):1699–1707

    Article  CAS  Google Scholar 

  7. Mills D, Burstein E (1974) Polaritons: the electromagnetic modes of media. Rep Prog Phys 37(7):817

    Article  CAS  Google Scholar 

  8. Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and nuclei 216(4):398–410

    Article  CAS  Google Scholar 

  9. Kretschmann E, Raether H (1968) Radiative decay of non radiative surface plasmons excited by light. Zeitschrift für Naturforschung A 23(12):2135–2136

    Article  CAS  Google Scholar 

  10. Ritchie R et al (1968) Surface-plasmon resonance effect in grating diffraction. Phys Rev Lett 21(22):1530

    Article  CAS  Google Scholar 

  11. Yang J et al (2011) Plasmonic polymer tandem solar cell. ACS Nano 5(8):6210–6217

    Article  CAS  PubMed  Google Scholar 

  12. Iqbal T et al (2019) Investigation of plasmonic bandgap for 1D exposed and buried metallic gratings. Plasmonics 14(2):493–499

    Article  Google Scholar 

  13. Stepanov AL et al (2012) Synthesis and optical properties of silver nanoparticles in ORMOCER. Appl Phys A 108(2):375–378

    Article  CAS  Google Scholar 

  14. Liang D et al (2013) High-Efficiency Nanostructured Window GaAs Solar Cells. Nano Lett 13(10):4850–4856

    Article  CAS  PubMed  Google Scholar 

  15. Isabella O, Krč J, Zeman M (2010) Modulated surface textures for enhanced light trapping in thin-film silicon solar cells. Appl Phys Lett 97(10):101106

    Article  Google Scholar 

  16. Atwater HA, Polman A (2011) Plasmonics for improved photovoltaic devices. Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group 1–11

  17. Ritchie R (1957) Plasma losses by fast electrons in thin films. Phys Rev 106(5):874

    Article  CAS  Google Scholar 

  18. Stern E, Ferrell R (1960) Surface plasma oscillations of a degenerate electron gas. Phys Rev 120(1):130

    Article  Google Scholar 

  19. Powell C, Swan J (1960) Effect of oxidation on the characteristic loss spectra of aluminum and magnesium. Phys Rev 118(3):640

    Article  CAS  Google Scholar 

  20. Teng Y-Y, Stern EA (1967) Plasma radiation from metal grating surfaces. Phys Rev Lett 19(9):511

    Article  Google Scholar 

  21. Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408(3–4):131–314

    Article  CAS  Google Scholar 

  22. Weiner J (2009) The physics of light transmission through subwavelength apertures and aperture arrays. Rep Prog Phys 72(6):064401

    Article  Google Scholar 

  23. Drude P (1900) Zur elektronentheorie der metalle. Ann Phys 306(3):566–613

    Article  Google Scholar 

  24. Zakharian AR, Moloney JV, Mansuripur M (2007) Surface plasmon polaritons on metallic surfaces. Opt Express 15(1):183–197

    Article  PubMed  Google Scholar 

  25. Sommerfeld A (1899) Ueber die Fortpflanzung elektrodynamischer Wellen längs eines Drahtes. Ann Phys 303(2):233–290

    Article  Google Scholar 

  26. Zenneck J (1907) Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie. Ann Phys 328(10):846–866

    Article  Google Scholar 

  27. Darmanyan SA, Zayats AV (2003) Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study. Phys Rev B 67(3):035424

    Article  Google Scholar 

  28. Raether H (1988) Surface plasmons on smooth surfaces. Surface plasmons on smooth and rough surfaces and on gratings. Springer, pp 4–39

    Chapter  Google Scholar 

  29. Raether H (1988) Surface plasmons on smooth surfaces. Surface plasmons on smooth and rough surfaces and on gratings 4–39

  30. Palik ED (1984) Handbook of optical-constants 1

  31. Iqbal T (2013) Nanoplasmonic grating coupler for transducer applications. Queen's University Belfast

  32. Iqbal T, Afsheen S (2016) Coupling efficiency of surface plasmon polaritons for 1D plasmonic gratings: role of under-and over-milling. Plasmonics 11(5):1247–1256

    Article  CAS  Google Scholar 

  33. O'Connor D (2010) Modelling of nano-optic light delivery mechanisms for use in high density data storage. Queen's University Belfast

  34. Palik ED (1985) Handbook of Optical Constants of Solids (Academic, Orlando). Google Scholar 286–297

  35. Adachi S (1999) Optical constants of crystalline and amorphous semiconductors: numerical data and graphical information. Springer Science & Business Media

  36. Palik ED (1998) Handbook of optical constants of solids. Vol. 3. Academic press

  37. Tang J et al (2011) Cyclosporin A induces cardiomyocyte injury through calcium-sensing receptor-mediated calcium overload. Die Pharmazie Int J Pharm Sci 66(1):52–57

    CAS  Google Scholar 

  38. Wang X et al (2011) The application of COMSOL multiphysics in direct current method forward modeling. Procedia Earth Planet Sci 3:266–272

    Article  Google Scholar 

  39. Yee K (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propag 14(3):302–307

    Article  Google Scholar 

  40. Bathe M et al (2008) Cytoskeletal bundle mechanics. Biophys J 94(8):2955–2964

    Article  CAS  PubMed  Google Scholar 

  41. Gupta K, Meek J (1996) A brief history of the beginning of the finite element method. Int J Numer Meth Eng 39(22):3761–3774

    Article  Google Scholar 

  42. Carrier D, Dubowski JJ (2009) "Rapid Prototyping" of biosensing surface plasmon resonance devices using COMSOL & Matlab Software. Proc COMSOL Conference

  43. Iqbal T et al (2022) Theoretical study of excitation of surface plasmon polaritons using silver metal. Plasmonics 1–11

  44. Ferry VE et al (2008) Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett 8(12):4391–4397

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant number R.G.P. 2/151/43.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Muzafer Iqbal. The first draft of the manuscript was written by Muzafer Iqbal and Muhammad Abrar, Irfan Ahmed, M. A. Sayed, A. F. Abd El-Rehim, and Atif Mossad Alicommented on previous versions of the manuscript. Muhammad Abrar and Tahir Iqbal supervised and authenticated the data. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Muhammad Abrar or Tahir Iqbal.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, M., Abrar, M., Iqbal, T. et al. Plasmonic-based Solar Cell: Geometrical Optimization of 1D-nanostructured Grating for Enhanced Efficiency. Plasmonics 17, 2491–2520 (2022). https://doi.org/10.1007/s11468-022-01717-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-022-01717-5

Keywords

Navigation