Skip to main content
Log in

A Novel Dual-Band Conformal Surface Plasmon Waveguide with Tunable Frequency Response in Large Scale

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A novel dual-band conformal surface plasmon (CSP) waveguide is designed and well studied in this paper. In earlier research studies, we have recognized that electromagnetic field of CSP waveguide are always confined to a sub-wavelength area and have a strong potential to be applied in device designing. However, almost all of the earlier CSP structures are mainly focus on the fundamental mode characteristics, such as fundamental resonance frequency. Here we propose a innovative dual inverted-L periodical structure with excellent performance not only on the fundamental mode but also on a new upper mode. This structure operates in microwave frequency range and shows outstanding frequency tunability characteristic. Being different from frequency characteristics in the earlier CSP waveguides, which always used to be designed single-frequency device, the novel dual-band frequency tunability characteristics of proposed dual inverted-L structure have an advantage in dual-frequency device design. In present paper, we also realize a tunable dual-frequency filter by changing the scaling factor of dual inverted-L stubs. In this case, its secondary operation frequency range can be tuned from 15 to 16.2 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Material

The data used in this study is available from the corresponding author on reasonable request.

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830. https://doi.org/10.1038/nature01937

    Article  CAS  Google Scholar 

  2. Xiong X, Wang M et al (2021) Constructing an achromatic polarization-dependent bifocal metalens with height -gradient metastructures. Opt Lett 46:1193–1196. https://doi.org/10.1364/OL.414668

    Article  PubMed  Google Scholar 

  3. Chen J, Liu ZQ et al (2020) Electrically modulating and switching infrared absorption of monolayer graphene in metamaterials. Carbon 162:187. https://doi.org/10.1016/j.carbon.2020.02.032

    Article  CAS  Google Scholar 

  4. Chen J, Wang LH, Park GS et al (2019) Photonic microcavity-enhanced magnetic plasmon resonance of metamaterials for sensing applications. IEEE Photonics Technol Lett 31(2). https://doi.org/10.1109/LPT.2018.2881989

  5. Chen L, Zhu YM, Zhuang SL et al (2019) Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review. Front Inf Technol Electron Eng 20(5):591–607. https://doi.org/10.1631/FITEE.1800633

    Article  Google Scholar 

  6. Zhou J, Chen L, Zhu YM et al (2020) Terahertz on-chip sensing by exciting higher radial order spoof localized surface plasmons. Appl Phys Express 13:012014. https://doi.org/10.7567/1882-0786/ab5eb3

    Article  CAS  Google Scholar 

  7. Zhou XP, Chen Z et al (2019) Multiple Fano resonances in spoof plasmon resonators of corrugated cylinder-ring structure. Phys Scr 94:115804. https://doi.org/10.1088/1402-4896/ab1ed2

    Article  CAS  Google Scholar 

  8. Pendry JB (2004) Mimicking surface plasmons with structured surfaces. Science 305(5685):847–848. https://doi.org/10.1126/science.1098999

    Article  CAS  PubMed  Google Scholar 

  9. Garcia-Vidal FJ, Martín-Moreno L, Pendry JB (2005) Surfaces with holes in them: new plasmonic metamaterials. J Opt Pure Appl Opt 7(2):S97. https://doi.org/10.1088/1464-4258/7/2/013

    Article  Google Scholar 

  10. Hibbins AP (2005) Experimental verification of designer surface plasmons. Science 308(5722):670–672. https://doi.org/10.1126/science.1109043

    Article  CAS  PubMed  Google Scholar 

  11. Nahata A, Cui A, Kumar G et al (2011) Planar terahertz waveguides based on complementary split ring resonators. Opt Express 19(2):1072–1080. https://doi.org/10.1364/OE.19.001072

    Article  CAS  PubMed  Google Scholar 

  12. Navarro-Cía M, Beruete M, Sorolla M et al (2011) Enhancing the dual-band guiding capabilities of coaxial spoof plasmons via use of transmission line concepts. Plasmonics 6(2):295–299. https://doi.org/10.1007/s11468-011-9203-x

    Article  Google Scholar 

  13. Maier SA, Andrews SR, Martín-Moreno L et al (2006) Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys Rev Lett 97(17):176805. https://doi.org/10.1103/PhysRevLett.97.176805

    Article  CAS  PubMed  Google Scholar 

  14. Fernandezdominguez AI, Garciavidal FJ, Martincano D et al (2010) Domino plasmons for subwavelength terahertz circuitry. Opt Express 18(2):754. https://doi.org/10.1364/OE.18.000754

    Article  CAS  Google Scholar 

  15. Ma Y, Zhou J, Wang Z (2010) Surface plasmon waves on structured metal surface with periodic grooves modified by perpendicular cuts. IEEE Photon Technol Lett 22(7):450–452. https://doi.org/10.1109/LPT.2010.2040987

    Article  Google Scholar 

  16. Hooper IR, Tremain B, Dockrey JA et al (2014) Massively sub-wavelength guiding of electromagnetic waves. Sci Rep 4:7495. https://doi.org/10.1038/srep07495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gao X, Hui Shi J, Shen X et al (2013) Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies. Appl Phys Lett 102(15):824. https://doi.org/10.1063/1.4802739

    Article  CAS  Google Scholar 

  18. Liao Z, Zhao J, Pan BC et al (2014) Broadband transition between microstrip line and conformal surface plasmon waveguide. J Phys D Appl Phys 47(31):315103. https://doi.org/10.1088/0022-3727/47/31/315103

    Article  CAS  Google Scholar 

  19. Ma HF, Shen X, Cheng Q et al (2014) Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photonics Rev 8(1):146–151. https://doi.org/10.1002/lpor.201300118

    Article  CAS  Google Scholar 

  20. Zhang W, Zhu G, Sun L et al (2015) Trapping of surface plasmon wave through gradient corrugated strip with underlayer ground and manipulating its propagation. Appl Phys Lett 106(2):021104. https://doi.org/10.1063/1.4905675

    Article  CAS  Google Scholar 

  21. Liu L, Li Z, Xu B et al (2015) Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes. Appl Phys Lett 107(20):847. https://doi.org/10.1063/1.4935976

    Article  CAS  Google Scholar 

  22. Zhao S, Zhang HC, Zhao J et al (2017) An ultra-compact rejection filter based on spoof surface plasmon polaritons. Sci Rep 7:10576. https://doi.org/10.1038/s41598-017-11332-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shen X, Cui TJ (2013) Planar plasmonic metamaterial on a thin film with nearly zero thickness. Appl Phys Lett 102(21):211909. https://doi.org/10.1063/1.4808350

    Article  CAS  Google Scholar 

  24. Shen X, Cui TJ, Martin-Cano D et al (2013) Conformal surface plasmons propagating on ultrathin and flexible films. Proc Nat Acad Sci 110(1):40–45. https://doi.org/10.1073/pnas.1210417110

    Article  PubMed  Google Scholar 

  25. Kianinejad A, Chen ZN, Qiu CW (2018) Full modeling, loss reduction, and mutual coupling control of spoof surface plasmon-based meander slow wave transmission lines. IEEE Trans Microw Theory Tech 66(8):3764–3772. https://doi.org/10.1109/TMTT.2018.2841857

    Article  Google Scholar 

  26. Liu X, Feng Y, Zhu B, Zhao J, Jiang T (2016) Backward spoof surface wave in plasmonic metamaterial of ultrathin metallic structure. Sci Rep 6:20448. https://doi.org/10.1038/srep20448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liang Y, Yu H, AnakAgungAlitApriyana JC, Li NY, Sun LL (2016) On-chip sub-terahertz surface plasmon polariton transmission lines with mode converter in CMOS. Sci Rep 6:30063. https://doi.org/10.1038/srep30063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aghadjani M, Mazumder P (2015) THz polarizer controller based on cylindrical spoof surface plasmon polariton (C-SSPP). IEEE Trans Terahertz Sci Technol 5(4):556–563. https://doi.org/10.1109/TTHZ.2015.2439677

    Article  Google Scholar 

  29. Aghadjani M, Erementchouk M, Mazumder P (2016) Spoof surface plasmon polariton beam splitter. IEEE Trans Terahertz Sci Technol PP(99). https://doi.org/10.1109/TTHZ.2016.2599289

  30. Zhou YJ, Yang BJ (2015) Planar spoof plasmonic ultra-wideband filter based on low-loss and compact terahertz waveguide corrugated with dumbbell grooves. Appl Opt 14(54):4529–4533. https://doi.org/10.1364/AO.54.004529

    Article  Google Scholar 

  31. Ye LF, Xiao YF, Liu YH, Zhang L, Cai GX, Liu QH (2016) Strongly confined spoof surface plasmon polaritons waveguiding enabled by planar staggered plasmonic waveguides. Sci Rep 6:38528. https://doi.org/10.1038/srep38528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is supported by the Fundamental Research Funds of West Anhui University under grant no. WGKQ2021010.

Author information

Authors and Affiliations

Authors

Contributions

Yijiao Fang contributed to the conception and data analyses of the study. Yijiao Fang is the corresponding author and also the first author. Jiangwei Zhong contributed to the constructive discussions of the study. Jiangwei Zhong is the second author.

Corresponding author

Correspondence to Yijiao Fang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Written informed consent for publication was obtained from all participants.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Zhong, J. A Novel Dual-Band Conformal Surface Plasmon Waveguide with Tunable Frequency Response in Large Scale. Plasmonics 17, 613–619 (2022). https://doi.org/10.1007/s11468-021-01545-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01545-z

Keywords

Navigation