Skip to main content

Advertisement

Log in

Electromagnetic Energy Surface Modes in Metamaterial-Filled Bi-layer Graphene Structures

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This paper presents a theoretical study on the propagation of electromagnetic surface waves supported by the metamaterial-filled bi-layered graphene structure. The effective surface conductivity approach based upon the Kubo’s formalism is used to model the atomically thick graphene layer, while the analytical modeling of the metamaterials used the framework of causality principle-based Kramers-Kroing relations. With respect to the index of refraction, the two configurations of metamaterials have been considered—i.e., double positive (DPS) and double negative (DNG). The impedance boundary conditions (IBCs) have been employed at the interface for the computation of characteristics equations of odd and even surface modes under DPS and DNG configurations. The numerical results regarding the dispersion relations, effective mode index, and phase speed for the odd and even modes of electromagnetic surface waves supported by each configuration of structure have been presented. Further, the influence of chemical potential and thickness of metamaterial filling in parallel graphene layers on the wave propagation characteristics has been analyzed. To check the accuracy of the numerical results, special conditions were employed, which converge to the published results. The proposed work may have potential applications in plasmonic based logic designs, renewable energy devices, THz surface wave guides, and near-field communication devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zhang X, Xu Q, Xia L, Li Y, Gu J, Tian Z, Ouyang C, Han J, Zhang W (2020) Terahertz surface plasmonic waves: a review. Adv Photonics 2:014001

    CAS  Google Scholar 

  2. Otsuji T, Popov V, Ryzhii V (2014) Active graphene plasmonics for terahertz device applications. J Phys D Appl Phys 47:094006

    Article  CAS  Google Scholar 

  3. Luo X, Qiu T, Lu W, Ni Z (2013) Plasmons in graphene: recent progress and applications. Mater Sci Eng R Rep 74:351–376

    Article  Google Scholar 

  4. Grigorenko A, Polini M, Novoselov K (2012) Graphene plasmonics. Nat Photonics 6:749–758

    Article  CAS  Google Scholar 

  5. Baqir M, Choudhury P (2017) Graphene-based slab waveguide for slow-light propagation and mode filtering. J Electromagn Waves Appl 31:2055–2063

    Article  Google Scholar 

  6. Baqir M, Naqvi S (2020) Electrically tunable terahertz metamaterial absorber comprised Cu/graphene strips. Plasmonics p 2-7

  7. RA Depine (2016) Electromagnetics of graphene, in Graphene optics: electromagnetic solution of canonical problems (ed) Morgan & Claypool Publishers. p 1-1

  8. Fan Y, Shen NH, Zhang F, Zhao Q, Wu H, Fu Q, Wei Z, Li H, Soukoulis CM (2019) Graphene plasmonics: a platform for 2D optics. Adv Opt Mater 7:1800537

    Article  Google Scholar 

  9. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Article  CAS  Google Scholar 

  10. Mak KF, Sfeir MY, Wu Y, Lui CH, Misewich JA, Heinz TF (2008) Measurement of the optical conductivity of graphene. Phys Rev Lett 101:196405

    Article  Google Scholar 

  11. Low T, Avouris P (2014) Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8:1086–1101

    Article  CAS  Google Scholar 

  12. Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X (2011) A graphene-based broadband optical modulator. Nature 474:64–67

    Article  CAS  Google Scholar 

  13. Kakenov N,  Ergoktas MS, Balci O, Kocabas C (2018) "Graphene based terahertz phase modulators," 2D Materials, vol 5. p 035018

  14. Jornet JM, Akyildiz IF (2013) Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks. IEEE J Sel Areas Commun 31:685–694

    Article  Google Scholar 

  15. Boriskina SV, Ghasemi H, Chen G (2013) Plasmonic materials for energy: from physics to applications. Mater Today 16:375–386

    Article  CAS  Google Scholar 

  16. Koppens FH, Chang DE, Garcia de Abajo FJ (2011) Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett 11:3370–3377

    Article  CAS  Google Scholar 

  17. Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332:1291–1294

    Article  CAS  Google Scholar 

  18. Hanson GW (2008) Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide. J Appl Phys 104:084314

    Article  Google Scholar 

  19. Malekabadi A, Charlebois SA, Deslandes D (2013) Parallel plate waveguide with anisotropic graphene plates: effect of electric and magnetic biases. J Appl Phys 113:113708

    Article  Google Scholar 

  20. Abadi SAM, Charlebois S, Deslandes D (2012) Hybrid modes propagation inside parallel plate waveguide using anisotropic graphene plate, in. IEEE/MTT-S International Microwave Symposium Digest 2012:1–3

    Google Scholar 

  21. Correas-Serrano D, Gomez-Diaz JS, Perruisseau-Carrier J, Alvarez-Melcon A (2014) Study of spatial dispersion in graphene parallel-plate waveguides and equivalent circuit. In The 8th European Conference on Antennas and Propagation (EuCAP 2014) pp. 2674–2677.

  22. Hajian H, Soltani-Vala A, Kalafi M, Leung PT (2014) Surface plasmons of a graphene parallel plate waveguide bounded by Kerr-type nonlinear media. J Appl Phys 115:083104

    Article  Google Scholar 

  23. Yarmoghaddam E, Rakheja S (2017) Dispersion characteristics of THz surface plasmons in nonlinear graphene-based parallel-plate waveguide with Kerr-type core dielectric. J Appl Phys 122:083101

    Article  Google Scholar 

  24. Emadi R, Safian R, Nezhad AZ, Emadi R (2017) Analysis and design of graphene-based surface plasmon waveguide switch at long-wavelength infrared frequencies. IEEE J Sel Top Quantum Electron 23:1–9

    Google Scholar 

  25. Caloz C, Itoh T (2005) Electromagnetic metamaterials: transmission line theory and microwave applications: John Wiley & Sons

  26. Engheta N, Ziolkowski RW (2006) Metamaterials: physics and engineering explorations: John Wiley & Sons

  27. Eleftheriades GV, Balmain KG (2005) Negative-refraction metamaterials: fundamental principles and applications: John Wiley & Sons

  28. Shelby RA, Smith DR, Schultz S (2001) Experimental verification of a negative index of refraction. Science 292:77–79

    Article  CAS  Google Scholar 

  29. Guo B (2012) Negative refraction in the terahertz region by using plasma metamaterials. J Electromagn Waves Appl 26:2445–2451

    Article  Google Scholar 

  30. Ling F, Zhong Z, Huang R, Zhang B (2018) A broadband tunable terahertz negative refractive index metamaterial. Sci Rep 8:1–9

    Google Scholar 

  31. Zhong S, Lu Y, Li C, Xu H, Shi F, Chen Y (2017) Tunable plasmon lensing in graphene-based structure exhibiting negative refraction. Sci Rep 7:41788

    Article  CAS  Google Scholar 

  32. Zhao Z, Su S, Zhou H, Qiu W, Qiu P, Kan Q (2020) “Fast” plasmons propagating in graphene plasmonic waveguides with negative index metamaterial claddings. Nanomaterials 10:1637

    Article  CAS  Google Scholar 

  33. Yaqoob M, Ghaffar A, Alkanhal MA, Aladadi YT (2019) Analysis of hybrid surface wave propagation supported by chiral metamaterial–graphene–metamaterial structures. Results in Physics 14:102378

    Article  Google Scholar 

  34. Sahu PP (2015) Theoretical investigation of all optical switch based on compact surface plasmonic two mode interference coupler. J Lightwave Technol 34:1300–1305

    Article  Google Scholar 

  35. Gogoi N, Sahu PP (2015) All-optical compact surface plasmonic two-mode interference device for optical logic gate operation. Appl Opt 54:1051–1057

    Article  CAS  Google Scholar 

  36. Sahu PP Optical switch based on Graphene clad two surface plasmonic polariton mode coupler. Optik 227:166026

Download references

Funding

The authors received financial support from Deanship of Scientific Research (DSR) at King Saud University through the Research Group no RG-1436-012.

Author information

Authors and Affiliations

Authors

Contributions

M Azam, M.Z. Yaqoob, A. Ghaffar, and Y. Khan derived analytical expressions and numerical analysis. They wrote the main manuscript text. Majeed Alkanhal and Ali H. Alqahtani developed methodology in the given study.

Corresponding authors

Correspondence to Muhammad Zeshan Yaqoob, Abdul Ghaffar or Majeed A. S. Alkanhal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azam, M., Yaqoob, M.Z., Ghaffar, A. et al. Electromagnetic Energy Surface Modes in Metamaterial-Filled Bi-layer Graphene Structures. Plasmonics 16, 1175–1194 (2021). https://doi.org/10.1007/s11468-021-01375-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01375-z

Keywords

Navigation