Skip to main content
Log in

Ultrasensitive and Tunable Sensor Based on Plasmon-Induced Transparency in a Black Phosphorus Metasurface

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We propose an ultrasensitive and tunable mid-infrared sensor based on plasmon-induced transparency (PIT) in a monolayer black phosphorus metasurface. Results show that there are two PIT windows, each of which occurs when the long axis of the metasurface is placed along the MBP’s armchair and zigzag crystal directions, respectively. The corresponding sensors based on these PIT effects show high sensitivities of 7.62 THz/RIU and 7.36 THz/RIU. Both PIT frequencies can be tuned statically by varying the geometric parameters or dynamically by changing the electron doping of monolayer black phosphorus, making the sensors adaptable to tackle with a variety of scenarios. We expect that this work will advance the engineering of metasurfaces based on monolayer black phosphorus and promote their sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data are available upon request.

References

  1. Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101(4):218-221

    Google Scholar 

  2. Niu X, Hu X, Yan Q, Zhu J, Cheng H, Huang Y, Lu C, Fu Y, Gong Q (2019) Plasmon-induced transparency effect for ultracompact on-chip devices. Nanophotonics 8(7):1125-1149

    Article  Google Scholar 

  3. Yang X, Hu X, Chai Z, Lu C, Yang H, Gong Q (2014) Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies. Appl Phys Lett 104(22):221114

    Article  Google Scholar 

  4. Xiao S, Wang T, Liu T, Yan X, Li Z, Xu C (2018) Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials. Carbon 126:271-278

    Article  CAS  Google Scholar 

  5. Bai Y, Chen K, Liu H, Bu T, Cai B, Xu J, Zhu Y (2015) Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect. Opt Commun 353:83–89

    Article  CAS  Google Scholar 

  6. Zhang L, Dong Z, Wang YM, Liu Y, Zhang S, Yang JK, Qiu C (2015) Dynamically configurable hybridization of plasmon modes in nanoring dimer arrays. Nanoscale 7(28):12018-12022

    Article  CAS  Google Scholar 

  7. Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Giessen H (2009) Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 10(4):1103-1107

    Article  Google Scholar 

  8. Pan W, Yan Y, Ma Y, Shen D (2019) A terahertz metamaterial based on electromagnetically induced transparency effect and its sensing performance. Opt Commun 431:115-119

    Article  CAS  Google Scholar 

  9. Yan X, Yang M, Zhang Z, Liang L, Wei D, Wang M, Yao J (2019) The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells. Biosens Bioelectron 126:485-492

    Article  CAS  Google Scholar 

  10. Hu S, Liu D, Yang H, Wang H, Wang Y (2019) Staggered H-shaped metamaterial based on electromagnetically induced transparency effect and its refractive index sensing performance. Opt Commun 450:202-207

    Article  CAS  Google Scholar 

  11. Yang M, Liang L, Zhang Z, Xin Y, Wei D, Song X, Yao J (2019) Electromagnetically induced transparency-like metamaterials for detection of lung cancer cells. Opt Express 27(14):19520-19529

    Article  CAS  Google Scholar 

  12. He X (2015) Tunable terahertz graphene metamaterials. Carbon 82:229-237

    Article  CAS  Google Scholar 

  13. Amin M, Farhat M, Baˇgci H (2013) A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications. Sci Rep 3(1):2105

    Article  CAS  Google Scholar 

  14. Shi X, Han D, Dai Y, Yu Z, Sun Y, Chen H, Liu X, Zi J (2013) Plasmonic analog of electromagnetically induced transparency in nanostructure graphene. Opt Express 21(23):28438-28443

    Article  Google Scholar 

  15. Jia W, Ren P, Jia Y, Fan C (2019) Active control and large group delay in graphene-based terahertz metamaterials. J Phys Chem C 123(30):18560-18564

    Article  CAS  Google Scholar 

  16. Xiao B, Tong S, Fyffe A, Shi Z (2020) Tunable electromagnetically induced transparency based on graphene metamaterials. Opt Express 28(3):4048-4057

    Article  Google Scholar 

  17. Asgari S, Shokati E, Granpayeh N (2019) High-efficiency tunable plasmonically induced transparency-like effect in metasurfaces composed of graphene nano-rings and ribbon arrays and its application. Appl Optics 58(13):3664-3670

    Article  CAS  Google Scholar 

  18. Churchill HO, Jarilloherrero P (2014) Two-dimensional crystals: Phosphorus joins the family. Nat Nanotechnol 9(5):330–331

    Article  CAS  Google Scholar 

  19. Xia F, Wang H, Jia Y (2014) Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat Commun 5(1):4458

    Article  CAS  Google Scholar 

  20. Rodin AS, Carvalho A, Neto AHC (2014) Strain-induced gap modification in black phosphorus. Phys Rev Lett 112(17):176801

    Article  CAS  Google Scholar 

  21. Wang X, Jones AM, Seyler KL, Tran V, Jia Y, Zhao H, Xia F (2015) Highly anisotropic and robust excitons in monolayer black phosphorus. Nat Nanotechnol 10(6):517-521

    Article  CAS  Google Scholar 

  22. Castellanosgomez A (2015) Black phosphorus: Narrow gap, wide applications. J Phys Chem Lett 6(21):4280-4291

    Article  CAS  Google Scholar 

  23. Abbas AN, Liu B, Chen L, Ma Y, Cong S, Aroonyadet N, Kopf M, Nilges T, Zhou C (2015) Black phosphorus gas sensors. ACS Nano 9(5):5618-5624

    Article  CAS  Google Scholar 

  24. Cho S, Lee Y, Koh H, Jung H, Kim J, Yoo H, Kim J, Jung H (2016) Superior chemical sensing performance of black phosphorus: Comparison with MoS2 and graphene. Adv Mater 28(32):7020-7028

    Article  CAS  Google Scholar 

  25. Liu H, Hu K, Yan D, Chen R, Zou Y, Liu H, Wang S (2018) Recent advances on black phosphorus for energy storage, catalysis, and sensor applications. Adv Mater 30(32):1800295

    Article  Google Scholar 

  26. Ge X, Xia Z, Guo S (2019) Recent advances on black phosphorus for biomedicine and biosensing. Adv Func Mater 29:1900318

    Article  Google Scholar 

  27. Wu L, Guo J, Wang Q, Lu S, Dai X, Xiang Y, Fan D (2017) Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens Actuators B Chem 249:542-548

    Article  CAS  Google Scholar 

  28. Dai X, Chen H, Qiu C, Wu L, Xiang Y (2020) Ultrasensitive multiple guided-mode biosensor with few-layer black phosphorus. J Lightwave Technol 38(6):1564-1571

    Article  CAS  Google Scholar 

  29. Han L, Wang L, Xing H, Chen X (2019) Anisotropic plasmon induced transparency in black phosphorus nanostrip trimer. Opt Mater Express 9(2):352-361

    Article  CAS  Google Scholar 

  30. Liu C, Li H, Xu H, Zhao M, Wu K (2019) Slow light effect based on tunable plasmon-induced transparency of monolayer black phosphorus. J Phys D: Appl Phys 52(40):405203

    Article  CAS  Google Scholar 

  31. Liu C, Li H, Xu H, Zhao M, Xiong C, Zhang B, Wu K (2019) Tunable plasmon-induced transparency absorbers based on few-layer black phosphorus ribbon metamaterials. J Opt Soc Am B 36(11):3060-3065

    Article  CAS  Google Scholar 

  32. Liu C, Li H, Xu H, Zhao M, Xiong C, Li M, Ruan B, Zhang B, Wu K (2020) Dynamically tunable excellent absorber based on plasmon-induced absorption in black phosphorus nanoribbon. J Appl Phys 127(12):163301

    Article  CAS  Google Scholar 

  33. Liu Z, Aydin K (2016) Localized surface plasmons in nanostructured monolayer black phosphorus. Nano Lett 16(6):3457–3462

    Article  CAS  Google Scholar 

  34. Li H, Lin W, Xing H, Chen X (2018) Active tuning of mid-infrared surface plasmon resonance and its hybridization in black phosphorus sheet array. ACS Photonics 5(9):3828–3837

    Article  Google Scholar 

  35. Low T, Roldan R, Wang H, Xia F, Avouris P, Moreno LM, Guinea F (2014) Plasmons and screening in monolayer and multilayer black phosphorus. Phys Rev Lett 113(10):106802

    Article  Google Scholar 

  36. Lin C, Grassi R, Low T, Helmy AS (2016) Multilayer black phosphorus as a versatile mid-infrared electro-optic material. Nano Lett 16(3):1683-1689

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Shenzhen Research Foundation (Grant Nos. JCYJ20180507182444250, JCYJ20180508152903208, JCYJ20190808143801672) and the National Natural Science Foundation of China (Grant Nos. 61875133 and 11874269).

Author information

Authors and Affiliations

Authors

Contributions

H.C. and G.L. proposed the concept. H.C. performed the simulations. All authors analyzed the data and discussed the results. H.C. wrote the draft manuscript. H.C. and G.L. edited the manuscript. X.D. and G.L. supervised the project.

Corresponding authors

Correspondence to Xiaoyu Dai or Guangyuan Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Xiong, L., Hu, F. et al. Ultrasensitive and Tunable Sensor Based on Plasmon-Induced Transparency in a Black Phosphorus Metasurface. Plasmonics 16, 1071–1077 (2021). https://doi.org/10.1007/s11468-021-01374-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01374-0

Keywords

Navigation