Skip to main content
Log in

High Performance Plasmonic Nano-Biosensor Based on Tunable Ultra-Narrowband Perfect Absorber Utilizing Liquid Crystal

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, a refractive index plasmonic nano-sensor based on a tunable perfect absorber has been proposed in the near-infrared region. The proposed sensor consists of a truncated cone resonator with more than 99% absorption and ultra-narrow bandwidth. Liquid crystal has been used in the designed nano-structure to tune the structure by variation of the incident angle and applying the external bias field to obtain the near perfect and ultra-narrow absorption peak. The proposed nano-sensor has a high sensitivity of 1363.63 nm/RIU and a high figure of merit of 1136.36 RIU−1 at the telecommunication wavelength of 1550 nm. Furthermore, after obtaining appropriate conditions for the liquid crystal layer, we have suggested a new resonator to boost the interaction of surface plasmons and the test medium. Therefore, the sensitivity and figure of merit are increased to the values of 1509 nm/RIU and 1257.5 RIU−1, respectively. This excellent performance of the sensor has huge potential for precision applications such as biomedical science and biosensor. Hence, the capability of the proposed nano-sensor in the field of histopathology for cancerous tissue diagnosis and detection of toxic and flammable gases to prevent endangering human health has been studied. In this case, the high sensitivity of 1368.06 nm/RIU and high figure of merit of 1179.36 RIU−1 have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

  2. Svedendahl M, Chen S, Dmitriev A, Ka M (2009) Refractometric sensing using propagating versus localized surface plasmons: a direct comparison. Nano Lett 9:4428–4433

    Article  CAS  Google Scholar 

  3. Dmitriev A (2012) Nanoplasmonic sensors. Springer, New York

    Book  Google Scholar 

  4. Tong L, Wei H, Zhang S, Xu H (2014) Recent advances in plasmonic sensors. Sensors 14:7959–7973

    Article  CAS  Google Scholar 

  5. Minh H, Endo T, Kerman K, Chikae M, Kim D (2007) A localized surface plasmon resonance based immunosensor for the detection of casein in milk. Sci Technol Adv Mater 8:331–338

    Article  Google Scholar 

  6. Chen S, Svedendahl M, Käll M, Gunnarsson L, Dmitriev A (2009) Ultrahigh sensitivity made simple: nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics. Nanotechnol. 20:434015–434024

    Article  CAS  Google Scholar 

  7. Baranzadeh F, Nozhat N (2019) Tunable metasurface refractive index plasmonic nano-sensor utilizing an ITO thin layer in the near-infrared region. Appl Opt 58:2616–2623

    Article  CAS  Google Scholar 

  8. Bingham JM, Anker JN, Kreno LE, Duyne RP (2010) Gas sensing with high-resolution localized surface plasmon resonance spectroscopy. J Am Chem Soc 132:17358–17359

    Article  CAS  Google Scholar 

  9. Kelly KL, Coronado E, Zhao L, Schatz GC (2003) The optical properties of metal nano particles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  10. Mock JJ, Smith DR, Schultz S (2003) Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett 3:485–491

    Article  CAS  Google Scholar 

  11. Dahlin AB, Chen S, Jonsson MP, Gunnarsson L, Ka M (2009) High-resolution microspectroscopy of plasmonic nanostructures for miniaturized biosensing. Anal Chem 81:6572–6580

    Article  CAS  Google Scholar 

  12. Sherry LJ, Chang S, Schatz GC, Duyne RP, Wiley BJ, Xia Y (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5:2034–2038

    Article  CAS  Google Scholar 

  13. Sau TK, Murphy CJ (2004) Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 20:6414–6420

    Article  CAS  Google Scholar 

  14. Chen H, Kou X, Yang Z, Ni W, Wang J (2008) Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24:5233–5237

    Article  CAS  Google Scholar 

  15. Verellen N, Dorpe PV, Huang C, Lodewijks K, Vandenbosch G, Lagae L, Moshchalkov V (2011) Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett 11:391–397

    Article  CAS  Google Scholar 

  16. Chen J, Yuan J, Zhang Q, Ge HM, Tang CJ, Liu Y, Guo BN (2018) Dielectric waveguide-enhanced localized surface plasmon resonance refractive index sensing. Opt Mater Express 8:342–347

    Article  CAS  Google Scholar 

  17. Wang L, Sang T, Gao J, Yin X, Qi H (2018) High-performance sensor achieved by hybrid guide-mode resonance / surface plasmon resonance platform. Appl Opt 57:338–7343

    Google Scholar 

  18. Chen Z, Wang C, Wang L, Jiang C, Zhu H (2013) Surface plasmonic resonance sensor by metal strip pair arrays. Opt Quant Electron 45:707–712

    Article  CAS  Google Scholar 

  19. Chen J, Zhang Q, Peng C, Tang C, Shen X, Deng L, Park G (2018) Optical cavity-enhanced localized surface. IEEE Photon Technol Lett 30:728–731

    Article  CAS  Google Scholar 

  20. Khoo IC (2007) Liquid crystals. John Wiley & Sons, Inc., Hoboken, New Jersey

  21. Yang DK, Wu ST (2015) Fundamentals of liquid crystal devices. Wiley, Chichester, West Sussex

  22. Jerome B (1991) Surface effects and anchoring in liquid crystals. Rep Prog Phys 54:391–451

    Article  CAS  Google Scholar 

  23. Khan W, Park S (2012) Configuration change of liquid crystal microdroplets coated with a novel polyacrylic acid block liquid crystalline polymer by protein adsorption. Lab Chip 12:4553–4559

    Article  CAS  Google Scholar 

  24. Ahmadian D, Ghobadi C, Nourinia J (2015) Tunable plasmonic sensor with metal-liquid crystal-metal structure. IEEE Photonics J 7:1–10

    Article  CAS  Google Scholar 

  25. Dodge MJ (1984) Refractive properties of magnesium fluoride. Appl Opt 23:1980–1985

    Article  CAS  Google Scholar 

  26. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  27. Szunerits S, Boukherroub R (2012) Sensing using localised surface plasmon resonance sensors. Chem Commun 48:8999–9010

    Article  CAS  Google Scholar 

  28. Ma Y (2013) Electro-optics and nonlinear optics of liquid crystal-plasmonic materials and structures PhD dissertation. Pennsylvania State University USA

  29. Knoesen A, Moharam MG, Gaylord TK (1985) Electromagnetic propagation at interfaces and in waveguides in uniaxial crystals. Appl Phys B Lasers Opt 38:171–178

    Article  Google Scholar 

  30. Mbise GW, Bellac DL, Niklasson GA, Granqvist CG (1997) Angular selective window coatings: theory and experiments. J Phys D Appl Phys 30:2103–2122

    Article  CAS  Google Scholar 

  31. Vgnatovich F, Ignatovich VK (2012) Optics of anisotropic media. Physics-Uspekhi 55:709–720

    Article  Google Scholar 

  32. Reshetnyak VY, Pinkevych IP, Zadorozhnii VI, Evans DR (2015) Liquid crystal control of surface plasmon resonance sensor based on nanorods. Mol Cryst Liq Cryst 613:110–120

    Article  CAS  Google Scholar 

  33. Alavirad M, Mousavi SS, Roy L, Ave E (2013) Schottky-contact plasmonic dipole rectenna concept for biosensing. Opt Express 21:4328–4347

    Article  CAS  Google Scholar 

  34. Koudela I, Yee SS (1999) Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison. Sensors Actuators B Chem 54:16–24

    Article  Google Scholar 

  35. Gao D, Guan C, Wen Y, Zhong X, Yuan L (2014) Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths. Opt Commun 313:94–98

    Article  CAS  Google Scholar 

  36. UC Irvine Environmental Health & Safety (2014) Toxic gas program, University of California, https://ehs.uci.edu

  37. Fogiel M (1984) Handbook of mathematical, scientific, and engineering formulas, tables, functions, graphs, Transforms. Research and Education Association, Piscataway, New Jersey

  38. Quirce S, Barranco P (2010) Cleaning agents and asthma. J Investig Allergol Clin Immunol 20:542–550

    CAS  PubMed  Google Scholar 

  39. Brenner H, Kloor M, Pox CP (2014) Colorectal cancer. Lancet 383:1490–1502

    Article  Google Scholar 

  40. Carneiro I, Carvalho S, Silva V, Henrique R, Oliveira L, Tuchin V (2019) Kinetics of optical properties of human colorectal tissues during optical clearing: a comparative study between normal and pathological tissues during optical clearing: a comparative study. J Biomed Opt 23:121620–121612

    Google Scholar 

  41. Bahador H, Heidarzadeh H (2020) Analysis and simulation of a novel localized surface plasmonic highly sensitive refractive index sensor. Plasmonics 15:1273–1279. https://doi.org/10.1007/s11468-020-01144-4

    Article  Google Scholar 

  42. Wei Z, Li X, Zhong N, Tan X, Zhang X, Liu H, Meng H, Liang R (2016) Analogue electromagnetically induced transparency based on low-loss metamaterial and its application in nanosensor and slow-light device. Plasmonics 12:641–647

    Article  Google Scholar 

  43. Liu GD, Zhai X, Wang LL, Lin Q, Xia SX, Luo X, Zhao CJ (2018) A high-performance refractive index sensor based on Fano resonance in Si split-ring metasurface. Plasmonics 13:15–19

    Article  CAS  Google Scholar 

  44. Qin L, Wu S, Deng J, Li L, Li X (2018) Tunable light absorbance by exciting the plasmonic gap mode for refractive index sensing. Opt Lett 43:1427–1430

    Article  CAS  Google Scholar 

  45. Zhou P, Zheng G (2018) High-efficient light absorption of monolayer graphene via cylindrical dielectric arrays and the sensing application. Opt Mater 78:471–476

    Article  CAS  Google Scholar 

  46. Lu X, Zhang L, Zhang T (2015) Nanoslit-microcavity-based narrow band absorber for sensing applications. Opt Express 23:20715–20720

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najmeh Nozhat.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranzadeh, F., Nozhat, N. High Performance Plasmonic Nano-Biosensor Based on Tunable Ultra-Narrowband Perfect Absorber Utilizing Liquid Crystal. Plasmonics 16, 253–262 (2021). https://doi.org/10.1007/s11468-020-01285-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01285-6

Keywords

Navigation