Skip to main content
Log in

A Three-Core Hybrid Plasmonic Polarization Splitter Designing Based on the Hybrid Plasmonic Waveguide for Utilizing in Optical Integrated Circuits

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this research, by using the theory of the surface plasmon polaritons and the plasmonic hybrid components, a new symmetric three-core hybrid plasmonic splitter is proposed at the communication wavelength range. The design consists of two silicon external waveguides with the same dimensions and features, and a centered hybrid waveguide. The centered hybrid waveguide simulated with two silver metal layers and a core silicon waveguide. The plasmonic hybrid coupler supports three supermodes and directly couples the transverse magnetic (TM) mode to the second external waveguide. In contrast, the transverse electric (TE) mode passes through the first external waveguide without coupling. The essential features of the proposed design were studied thoroughly. The most significant parameters of the structure, including propagated modes in the waveguides, extinction ratio (ER), insertion loss (IL), and power transfers, were evaluated using the finite-difference eigenmode (FDE) and eigenmode expansion (EME) methods. The results show that the ERs for the external waveguides are greater than 38 dB for the first external waveguide and 40 dB for the second external waveguide. The ILs of the TE and TM modes are less than 0.1 dB and 0.5 dB at the 1550 nm telecommunication wavelength, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alam M, Meier J, Aitchison J, Mojahedi M Super mode propagation in low index medium. In: Quantum Electronics and Laser Science Conference, 2007. Optical Society of America, p JThD112

  2. Alam MZ, Aitchison JS, Mojahedi M (2014) A marriage of convenience: hybridization of surface plasmon and dielectric waveguide modes. Laser Photonics Rev 8(3):394–408. https://doi.org/10.1002/lpor.201300168

    Article  CAS  Google Scholar 

  3. Sun B, Chen M-Y, Zhang Y-K, Zhou J (2013) An ultracompact hybrid plasmonic waveguide polarization beam splitter. Appl Phys B Lasers Opt 113(2):179–183. https://doi.org/10.1007/s00340-013-5453-y

    Article  CAS  Google Scholar 

  4. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4(2):83. https://doi.org/10.1038/nphoton.2010.282

    Article  CAS  Google Scholar 

  5. Chee J, Zhu S, Lo G (2012) CMOS compatible polarization splitter using hybrid plasmonic waveguide. Opt Express 20(23):25345–25355. https://doi.org/10.1364/OE.20.025345

    Article  CAS  Google Scholar 

  6. Zhu H, Hao R, Li E (2018) Ridge waveguide assisted highly efficient transverse-electric-pass polarizer based on a hybrid plasmonic waveguide. Appl Opt 57(19):5533–5537. https://doi.org/10.1364/AO.57.005533

    Article  CAS  Google Scholar 

  7. Chang K-W, Huang C-C (2016) Ultrashort broadband polarization beam splitter based on a combined hybrid plasmonic waveguide. Sci Rep 6:19609. https://doi.org/10.1038/srep19609

    Article  CAS  Google Scholar 

  8. Gao L, Huo Y, Harris JS, Zhou Z (2013) Ultra-compact and low-loss polarization rotator based on asymmetric hybrid plasmonic waveguide. IEEE Photon Technol Lett 25(21):2081–2084. https://doi.org/10.1109/LPT.2013.2281425

    Article  CAS  Google Scholar 

  9. Ni B, Xiao J (2018) Ultracompact and broadband silicon-based TE-pass 1× 2 power splitter using subwavelength grating couplers and hybrid plasmonic gratings. Opt Express 26(26):33942–33955. https://doi.org/10.1364/OE.26.033942

    Article  CAS  Google Scholar 

  10. Dai D, Bauters J, Bowers JE (2012) Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light: Sci Appl 1(3):e1–e1. https://doi.org/10.1038/lsa.2012.1

    Article  CAS  Google Scholar 

  11. Xiao J, Guo Z (2018) Ultracompact polarization-insensitive power splitter using subwavelength gratings. IEEE Photon Technol Lett 30(6):529–532. https://doi.org/10.1109/LPT.2018.2801337

    Article  CAS  Google Scholar 

  12. Yuan W, Kojima K, Wang B, Koike-Akino T, Parsons K, Nishikawa S, Yagyu E (2012) Mode-evolution-based polarization rotator-splitter design via simple fabrication process. Opt Express 20(9):10163–10169. https://doi.org/10.1364/OE.20.010163

    Article  Google Scholar 

  13. Su Z, Timurdogan E, Hosseini ES, Sun J, Leake G, Coolbaugh DD, Watts MR (2014) Four-port integrated polarizing beam splitter. Opt Lett 39(4):965–968. https://doi.org/10.1364/OL.39.000965

    Article  CAS  Google Scholar 

  14. D’Mello Y, Skoric J, Elfiky E, Hui M, Patel D, Wang Y (2017), Plant D numerical analysis and optimization of a multi-mode interference based polarization beam splitter. In: COMSOL conference Boston

  15. Nikoufard M, Alamouti MK, Pourgholi S (2017) Multimode interference power-splitter using InP-based deeply etched hybrid plasmonic waveguide. IEEE Trans Nanotechnol 16(3):477–483. https://doi.org/10.1109/TNANO.2017.2688397

    Article  CAS  Google Scholar 

  16. Dai D, Bowers JE (2011) Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler. Opt Express 19(19):18614–18620. https://doi.org/10.1364/OE.19.018614

    Article  Google Scholar 

  17. Ghosh S, Rahman B (2019) Design of on-chip hybrid plasmonic Mach-Zehnder interferometer for temperature and concentration detection of chemical solution. Sensors Actuators B Chem 279:490–502. https://doi.org/10.1016/j.snb.2018.09.070

    Article  CAS  Google Scholar 

  18. Wang J, Pei L, Weng S, Wu L, Huang L, Ning T, Li J (2017) A tunable polarization beam splitter based on magnetic fluids-filled dual-core photonic crystal fiber. IEEE Photon J 9(1):1–10. https://doi.org/10.1109/JPHOT.2017.2656248

    Article  Google Scholar 

  19. Younis B, Heikal A, Hameed MFO, Obayya S (2018) Highly wavelength-selective asymmetric dual-core liquid photonic crystal fiber polarization splitter. JOSA B 35(5):1020–1029. https://doi.org/10.1364/JOSAB.35.001020

    Article  CAS  Google Scholar 

  20. Danaie M, Nasiri Far R, Dideban A (2018) Design of a high-bandwidth Y-shaped photonic crystal power splitter for TE modes. Int J Optics Photonics 12(1):33–42

    Article  Google Scholar 

  21. Xie Y, Chen Z, Yan J, Wu Y, Huang T, Cheng Z (2020) Combination of surface plasmon polaritons and subwavelength grating for polarization beam splitting. Plasmonics 15(1):235–241. https://doi.org/10.1007/s11468-019-01032-6

    Article  CAS  Google Scholar 

  22. He Y, Zhang Y, Wang X, Liu B, Jiang X, Qiu C, Su Y, Soref R (2017) silicon polarization splitter and rotator using a subwavelength grating based directional coupler. In: 2017 Optical Fiber Communications Conference and Exhibition (OFC). IEEE, pp 1–3

  23. Wu G, Huang Y, Duan X, Liu K, Ma X, Liu T, Wang H, Ren X (2020) Design and fabrication of 1× N polarization-insensitive beam splitters based on 2D subwavelength gratings. Opt Commun 456:124458. https://doi.org/10.1016/j.optcom.2019.124458

    Article  CAS  Google Scholar 

  24. Bai B, Deng Q, Zhou Z (2017) Plasmonic-assisted polarization beam splitter based on bent directional coupling. IEEE Photon Technol Lett 29(7):599–602. https://doi.org/10.1109/LPT.2017.2675448

    Article  CAS  Google Scholar 

  25. Ong JR, Ang TY, Sahin E, Pawlina B, Chen G, Tan D, Lim ST, Png CE (2017) Broadband silicon polarization beam splitter with a high extinction ratio using a triple-bent-waveguide directional coupler. Opt Lett 42(21):4450–4453. https://doi.org/10.1364/OL.42.004450

    Article  CAS  Google Scholar 

  26. Ye C, Dai D (2020) Ultra-compact broadband 2× 2 3 dB power splitter using a subwavelength-grating-assisted asymmetric directional coupler. J Lightwave Technol 38(8):2370–2375. https://doi.org/10.1109/JLT.2020.2973663

    Article  CAS  Google Scholar 

  27. Kim Y, Lee MH, Kim Y, Kim KH (2018) High-extinction-ratio directional-coupler-type polarization beam splitter with a bridged silicon wire waveguide. Opt Lett 43(14):3241–3244. https://doi.org/10.1364/OL.43.003241

    Article  CAS  Google Scholar 

  28. Donnelly J (1986) Limitations on power-transfer efficiency in three-guide optical couplers. IEEE J Quantum Electron 22(5):610–616. https://doi.org/10.1109/JQE.1986.1073010

    Article  Google Scholar 

  29. Ye C, Liu K, Soref RA, Sorger VJ (2015) A compact plasmonic MOS-based 2× 2 electro-optic switch. Nanophotonics 4(3):261–268. https://doi.org/10.1515/nanoph-2015-0010

    Article  CAS  Google Scholar 

  30. Kim DW, Lee MH, Kim Y, Kim KH (2015) Planar-type polarization beam splitter based on a bridged silicon waveguide coupler. Opt Express 23(2):998–1004. https://doi.org/10.1364/OE.23.000998

    Article  CAS  Google Scholar 

  31. Wang J, Guan X, He Y, Shi Y, Wang Z, He S, Holmström P, Wosinski L, Thylen L, Dai D (2011) Sub-μm 2 power splitters by using silicon hybrid plasmonic waveguides. Opt Express 19(2):838–847. https://doi.org/10.1364/OE.19.000838

    Article  CAS  Google Scholar 

  32. Bozhevolnyi SI, Jung J (2008) Scaling for gap plasmon based waveguides. Opt Express 16(4):2676–2684. https://doi.org/10.1364/OE.16.002676

    Article  Google Scholar 

  33. Oulton RF, Sorger VJ, Genov D, Pile D, Zhang X (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2(8):496–500. https://doi.org/10.1038/nphoton.2008.131

    Article  CAS  Google Scholar 

  34. Gosciniak J, Holmgaard T, Bozhevolnyi SI (2011) Theoretical analysis of long-range dielectric-loaded surface plasmon polariton waveguides. J Lightwave Technol 29(10):1473–1481. https://doi.org/10.1109/JLT.2011.2134071

    Article  CAS  Google Scholar 

  35. Johnson PB, Christy R-W (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379. https://doi.org/10.1103/PhysRevB.6.4370

    Article  CAS  Google Scholar 

  36. Guan X, Wu H, Shi Y, Wosinski L, Dai D (2013) Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire. Opt Lett 38(16):3005–3008. https://doi.org/10.1364/OL.38.003005

    Article  CAS  Google Scholar 

  37. Xu Y, Xiao J, Sun X (2015) Proposal for compact polarization splitter using asymmetrical three-guide directional coupler. IEEE Photon Technol Lett 27(6):654–657. https://doi.org/10.1109/LPT.2015.2389815

    Article  Google Scholar 

  38. Zhang T, Yin X, Chen L, Li X (2016) Ultra-compact polarization beam splitter utilizing a graphene-based asymmetrical directional coupler. Opt Lett 41(2):356–359. https://doi.org/10.1364/OL.41.000356

    Article  CAS  Google Scholar 

  39. Hsu C-W, Chang T-K, Chen J-Y, Cheng Y-C (2016) 8.13 μm in length and CMOS compatible polarization beam splitter based on an asymmetrical directional coupler. Appl Opt 55(12):3313–3318. https://doi.org/10.1364/AO.55.003313

    Article  CAS  Google Scholar 

  40. Ni B, Xiao J (2017) Ultracompact and broadband silicon-based polarization beam splitter using an asymmetrical directional coupler. IEEE J Quantum Electron 53(4):1–8. https://doi.org/10.1109/JQE.2017.2721539

    Article  Google Scholar 

  41. Huang T, Xie Y, Wu Y, Cheng Z, Zeng S, Ping PS (2019) Compact polarization beam splitter assisted by subwavelength grating in triple-waveguide directional coupler. Appl Opt 58(9):2264–2268. https://doi.org/10.1364/AO.58.002264

    Article  CAS  Google Scholar 

  42. Manfrinato VR, Camino FE, Stein A, Zhang L, Lu M, Stach EA, Black CT (2019) Patterning Si at the 1 nm length scale with aberration-corrected electron-beam lithography: tuning of plasmonic properties by design. Adv Funct Mater 29(52):1903429. https://doi.org/10.1002/adfm.201903429

    Article  CAS  Google Scholar 

  43. Park J, Kim J, Kwon H (2020) Evaluation of lateral resolution for confocal Raman microscopy using gold nano-lines made by electron beam lithography. Bull Kor Chem Soc 41(1):34–37. https://doi.org/10.1002/bkcs.11914

    Article  CAS  Google Scholar 

Download references

Availability of Data and Material

All the results are clearly mentioned in the article.

Code Availability

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tofiq Nurmohammadi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirafkan Dizaj, L., Abbasian, K. & Nurmohammadi, T. A Three-Core Hybrid Plasmonic Polarization Splitter Designing Based on the Hybrid Plasmonic Waveguide for Utilizing in Optical Integrated Circuits. Plasmonics 15, 2213–2221 (2020). https://doi.org/10.1007/s11468-020-01249-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01249-w

Keywords

Navigation